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• Search: make decisions by looking ahead 

• Logic: deduce new facts from existing facts 

• Constraints: find a way to satisfy a given specification 

• Probability: reason quantitatively about uncertainty 

• Learning: make future predictions from past observations



Framework: empirical risk minimization

Goal: reproduce a mapping from inputs to outputs 
given a training set of example input-output pairs. 

• Representation: How will we model the 
relationship between inputs and outputs? 

• Cost: How will we evaluate whether we’re 
successfully modeling the input-output relationship? 

• Optimizer: How will we find the best possible (cost-
minimizing) model among all possible choices given 
our representation?

Modeling

Inference



ERM, mathematically

Goal: approximate a function  from features to labels given a training set of examples 
. 

• Representation: The hypothesis class  consisting of all possible candidates to approximate . 
E.g. the set of all linear functions . 

• Cost: A function  that scores elements of the hypothesis class (higher cost is worse). 

Often the sum of pointwise costs on the data set, i.e.  for some function 

. E.g. squared error . 

• Optimizer: An algorithm for finding a hypothesis  that minimizes .  is usually 
infinite, so you can’t check all hypotheses. E.g. gradient descent.

f : 𝒳 → 𝒴
(x1, f(x1)), (x2, f(x2)), …, (xn, f(xn))

ℋ f
ℋ = {x ↦ wx + b ∣ w, b ∈ ℝ}

C : ℋ → ℝ
n

∑
i=1

c(h(xi), f(xi))

c : 𝒴 × 𝒴 → ℝ c( ̂y, y) = ( ̂y − y)2

h ∈ ℋ C(h) ℋ





Modeling



Hypothesis class: decision trees

• Internal nodes test a particular 
feature and branch based on the 
feature value 

• Leaf nodes correspond to label 
predictions 

• Decision trees are highly expressive 

• Small trees can be easy to interpret, 
and mimic algorithms people might 
use to make decisions



Inference



Evaluating decision trees

• How do we know if a decision tree is fitting the data well? 

• One simple cost function: the proportion of misclassified examples 

. Also known as the classification error rate. 

• The term inside the sum is often called 0-1 loss

C(h) =
1
n

n

∑
i=1

1{h(xi) ≠ f(xi)}



Example: waiting for a restaurant



Evaluating decision trees

C(h) =
1
n

n

∑
i=1

1{h(xi) ≠ f(xi)}

C(h) =
1
2

C(h) =
1
6



Fitting decision trees

• Want a decision tree with small misclassification rate on the training set 

• Want a small tree (why?) 

• How many possible decision trees are there? 

• For categorical features, number of trees is finite but combinatorially large; 
impossible to try them all 

• Finding the smallest possible tree that is perfectly consistent with the training data is 
an NP-hard problem 

• Need to rely on heuristics to build the tree



Heuristic fitting algorithm

• Pick the feature with the most 
discriminative power, i.e. the one that 
separates the training examples into 
groups that are as pure as possible 

• For each child node of this internal node: 

• If all the examples have the same class, 
done 

• Otherwise,* recurse 

*Ignoring some edge cases: no examples in a child node, no more features left to use



Restaurant problem via ERM

Goal: approximate  given 
. 

• Representation: Hypothesis class   

• Cost: A function  that 
scores hypotheses, often the sum of 

pointwise costs, i.e.  

for some function . 

• Optimizer: An algorithm for finding 
an  that minimizes .

f : 𝒳 → 𝒴
(x1, f(x1)), (x2, f(x2)), …, (xn, f(xn))

ℋ

C : ℋ → ℝ
n

∑
i=1

c(h(xi), f(xi))

c : 𝒴 × 𝒴 → ℝ

h ∈ ℋ C(h)

 is the set of all possible combinations of 
feature values (hungry, raining, restaurant type, 
etc.). . 

  is the set of all possible decision trees. 

 

“Optimize” via the heuristic fitting algorithm

𝒳

𝒴 = {0,1}

ℋ

C(h) =
1
n

n

∑
i=1

1{h(xi) ≠ f(xi)}



Modeling



Example: predicting housing prices



Representation: linear models

• Hypothesis class: the set of all linear 
functions  

• Every one of these functions has the 
form  

• E.g.  and  on the right 

• Straight lines are simple and easy to 
interpret: as  increases by 1 unit,  
increases by  units. 

• Every hypothesis  can be 
identified by a pair of numbers .

ℝ → ℝ

h(x) = w1x + w0

w0 = 3 w1 = − 2/3

x y
w1

h ∈ ℋ
(w0, w1)



Cost: squared error

• How do we know if a line is a good fit to the 
data? 

• Add up squared errors between predictions 
and labels. 

 

• Sometimes called  loss, because this is the 
squared  norm of the residual vector .

C(h) =
n

∑
i=1

(yi − h(xi))2

=
n

∑
i=1

(yi − (w1xi + w0))2

ℓ2
ℓ2 y − ̂y



Optimizer: calculus

• How do we find the values of  and  that minimize ? 

• Because  is simple, we can optimize directly with calculus!

w0 w1 C(w0, w1)

ℋ



[calculus on board]



Optimizer: calculus

• How do we find the values of  and  that minimize ? 

• Because  is simple, we can optimize directly with calculus! 

• Solutions: 

 

 

• Solution is unique because the cost function is convex in the parameters

w0 w1 C(w0, w1)

ℋ

w0 =
1
n

n

∑
i=1

yi − w1xi

w1 =
n∑i xiyi − (∑i xi) (∑i yi)

n∑i x2
i − (∑ xi)2




