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• Search: make decisions by looking ahead


• Logic: deduce new facts from existing facts


• Constraints: find a way to satisfy a given specification


• Probability: reason quantitatively about uncertainty


• Learning: make future predictions from past observations



Independence helps

• Independence reduces the amount of data 
needed to specify the joint distribution


• Factored representation 


• 36 → 12 numbers in the dice example


• In general: exponential → linear in the number 
of variables


• Problem: independence is rare in practice

P(X, Y) = P(X)P(Y)

X Y P(X,Y)
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… … …
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Example: alarm reporting

• Your house has an alarm system 


• If the alarm goes off, your two neighbors Bob and 
Charlie will call you if they hear it


• Binary random variables  for alarm goes off, 
Bob calls, Charlie calls


• Question: are  and  independent?


• No! If Bob calls, then that means the alarm likely 
went off, so Charlie is likely to call too


•

A, B, C

B C

P(C = 1 ∣ B = 1) > P(C = 1)

A

B C



Example: alarm reporting

•  and  are not independent: 


• But they are conditionally independent given 


• If the alarm goes off, Charlie’s ability to hear it is 
not affected by Bob


• 


• This allows for a factored joint distribution


•

B C P(C ∣ B) ≠ P(C)

A

P(C ∣ A, B) = P(C ∣ A)

P(B, C ∣ A) = P(B ∣ A)P(C ∣ A)

A

B C



Conditional independence

•  and  are conditionally independent given  if 


• Conditional independence is often easier to find in practice than unconditional 
independence


• Important: independence is different from conditional independence. Can have 
one without the other.

X Y Z P(X, Y ∣ Z) = P(X ∣ Z)P(Y ∣ Z)



Example: alarm triggering

• Assume fires and earthquakes are independent rare 
events


• Either one will set off the alarm


• Joint distribution 



• Compute:


• 


•

P(F, E, A) = P(F)P(E)P(A ∣ F, E)

P(E = 1 ∣ A = 1)

P(E = 1 ∣ A = 1, F = 1)

A

F E

P(F = 1)

𝜖

P(E = 1)

𝜖

f e P(A = 1 | F = f, E = e)

0 0 0

0 1 1

1 0 1

1 1 1



Example: alarm triggering

• Assume fires and earthquakes are independent rare 
events


• Either one will set off the alarm


• Joint distribution 



• Compute:


• 


•

P(F, E, A) = P(F)P(E)P(A ∣ F, E)

P(E = 1 ∣ A = 1) = ϵ(1 − ϵ) + ϵ2

ϵ(1 − ϵ) + ϵ2 + (1 − ϵ)ϵ
= 1

2 − ϵ

P(E = 1 ∣ A = 1, F = 1) = ϵ2

ϵ2 + (1 − ϵ)ϵ
= ϵ

A

F E

P(F = 1)

𝜖

P(E = 1)

𝜖

f e P(A = 1 | F = f, E = e)

0 0 0

0 1 1

1 0 1

1 1 1



Example: alarm triggering

• 


• Conclusion: If your alarm goes off, knowing there 
was a fire decreases the chance that there was an 
earthquake


• The fire has “explained away” the alarm


• Not a causal statement: fires do not protect against 
earthquakes!


•  and  are independent (unconditionally)


• But  and  are conditionally dependent given !

P(E = 1 ∣ A = 1, F = 1) < P(E = 1 ∣ A = 1)

F E

F E A

A

F E

P(F = 1)

𝜖

P(E = 1)

𝜖

f e P(A = 1 | F = f, E = e)

0 0 0

0 1 1

1 0 1

1 1 1



Bayesian networks

• Let  be random variables


• A Bayesian network is a directed acyclic 
graph (DAG) where each node is a 
random variable 


• The Bayesian network specifies a joint 
distribution over  as a product of local 
conditional distributions, one for each 
node


•

X = (X1, …, Xn)

X

P(X1, …, Xn) =
n

∏
i=1

P(Xi ∣ parents(Xi))

X4

X2 X3

X1

P(X1, X2, X3, X4) = P(X1)P(X2 ∣ X1)P(X3 ∣ X1)P(X4 ∣ X2, X3)



d-separation

• A Bayesian network lets us read off the conditional 
independence relationships between any pair of 
variables


• d-separation in the graph  conditional 
independence in the joint distribution

⟺



d-separation rules

• Rule 1: unconditional d-separation


•  and  are d-separated if there is no unblocked path between them


• A path is blocked if it contains two arrows colliding head-to-head in a v-structure

X Y

X3

X2 X4

X1 X5

X6

d-separated:  and ,  and 


not d-separated:  and ,  
and ,  and 

X2 X4 X1 X6

X1 X3 X4
X5 X3 X6



d-separation rules

• Rule 2: blocking by conditioning


• An unblocked path becomes blocked if one of the nodes in the path is observed 
(shaded)

X3

X2 X4

X1 X5

X6

d-separated:  and ,  and 
,  and 


not d-separated:  and 

X1 X3 X3
X6 X1 X6

X3 X4



d-separation rules

• Rule 3: activated v-structures


• If the node at the center of a v-structure or one of its descendants is observed, then 
the v-structure is no longer blocking

X3

X2 X4

X1 X5

X6

d-separated: nothing


not d-separated: everything



d-separation examples

• A and B, given D and F


• A and B


• A and B, given C


• D and E, given C


• D and E


• D and E, given A and B



d-separation examples

• A and B, given D and F


• A and B


• A and B, given C


• D and E, given C


• D and E


• D and E, given A and B


(bold indicates d-separation)


