Artificial Intelligence

CSC 665

tyler dae devlin



HWO grades

median =g 20



SearchV

2.20.2024




e Search: make decisions by looking ahead



Modeling a game

Start state: s, € S
Possible actions: Actions(s) C A
Transition model: Succ(s,a) € §

Goal test: IsEnd(s) € {True, False}

Agent utility: Utility(s) € |

Whose turn: Player(s) € P

state space S, action set A, player set P, real numbers |



Example: chess

so = starting chess board
Actions(s) = legal chess moves available to Player(s)
Succ(s, a) = board state resulting from taking action a

ISEnd(s) = whether s is a checkmate or stalemate

+ oo if white wins
Utility(s) = 4 —oo if black wins
0 otherwise
white if an even number of turns have passed

Player(s) = {

black if an odd number of turns have passed



Two key characteristics of games

Different players in control at different nodes — one maximizing player and one
minimizing player.

All utility is concentrated at terminal nodes (i.e. leaves in a tree) — don’t know
whether a move is good or bad until the game is over.



What should you do?

Given a game state s, what action in Actions(s) should you take?
Depends on who you are — assume you are the maximizing player, max
max’s best action depends on what min does on the next turn

But min’s best action depends on max’s move on the next next turn

... which depends on min’s move on the next next next turn

And so on ...



Iminimax game tree on board]



MIN




Minimax recurrence

Let V(s) denote the minimax value of the game starting at state s.

(These are the node values from the previous example.)

Utility(s) if ISEnd(s)
V(s) = § MaX,;cActions(s) V(Succ(s, a)) if Player(s) = max

MIN,cActions(s) V(Suce(s, a)) it Player(s) = min

Expanding the recurrence, gives an expression of the form

V(sy) = max(min(max(... min Utility(Succ(s,, a,))...)))

% a 2%) a,



Game trees are exponentially large

* 250K possible tic-tac-toe games
* 288B possible chess games after just 8 moves

* 1029000 total possible chess games (vs. 103° atoms in universe)

Computing the minimax recurrence down to the leaf nodes is usually not feasible.
Need a way to speed up decision making.



Two ways to speed up

e Estimate V(s) using domain knowledge, which allows you to run a depth-limited
search. (Same basic idea as informed search with a heuristic.)

* Prune subtrees whose root node value can’t possibly be better than a lower bound
we’ve already found.

Won't discuss first approach, but you should know alpha-beta pruning (on the following slides).



[alpha-beta pruning on board]



(b)

[0, 3]




