Artificial Intelligence csc 665

Search IV

2.15.2024

Recap

- Search: make decisions by looking ahead
- Logic: deduce new facts from existing facts
- Constraints: find a way to satisfy a given specification
- Probability: reason quantitatively about uncertainty
- Learning: make future predictions from past observations

Search

Modeling: start state, actions, costs, transition model, goal test

Inference:

- Uninformed: backtracking, DFS, BFS, UCS
- Informed: greedy search and A* with heuristics via problem relaxation

A* Search

UCS

- Maintains a frontier of uniform PastCost
- Correct but slow.

Greedy search

- Chooses the node that minimizes h
- Incorrect but potentially fast.

A*

- Maintains a frontier of uniform PastCost + h
- Sometimes correct and potentially fast.

A* vs. Greedy

Problem: short-term greediness can get you into long-term trouble (true for all greedy algorithms in computer science and in life).

Key insight: computing PastCost is easy (just accumulate edge costs), and helps us realize when a prior greedy decision has led us astray.

A* can be wrong

Action costs

h

When is A* correct?

Definition: A heuristic is *admissible* if it **never overestimates** the cost to the goal. That is, $h(s) \leq \text{FutureCost}(s)$ for every $s \in S$.

Theorem: A* with heuristic function *h* is correct if *h* is admissible.

When is A* correct?

Proof: For contradiction, assume A* returns a path with cost C, but the optimal path has cost $C^* < C$. Then there is a node s on the optimal path that was not expanded by A*. Focusing on this node,

$$C < \text{PastCost}(s) + h(s)$$

 $\leq \text{PastCost}(s) + \text{FutureCost}(s)$
 $= C^*$

This is a contradiction. Thus, A* returns an optimal path.

How fast is A*?

Theorem: A* explores all states s satisfying PastCost(s) \leq PastCost(s*) - h(s).

Proof: A* explores all states s satisfying PastCost(s) + $h(s) \le \text{PastCost}(s^*)$

Takeaway: Want *h* to be as large as possible, because this means we explore fewer states. But can't be too large or we lose admissibility (and thus correctness)!

Problem Relaxation

- How to choose *h*?
- Create a "relaxed" version of the problem by removing constraints.
- Set the **estimate** *h* in the original problem to be the **exact** FutureCost in the relaxed problem.
- Such a heuristic is guaranteed to be admissible.
- **Example:** for mazes, remove the constraint that you can't travel through walls. Then FutureCost(s) is simply the Manhattan distance from s to s^* .
- What is the relaxation for Google maps? for the Roomba?

Backtracking search (last time)

Global state: minimum cost path, set of explored nodes

function search(s, path):

- if IsEnd(s):
 - update the minimum cost path
- for each action $a \in Actions(s)$:
 - if Succ(s, a) hasn't been explored yet:
 - add it to the explored set
 - extend path with Succ(s, a) and Cost(s, a)
 - recurse: search(Succ(s, a), path)

Backtracking search (revised)

Global state: minimum cost path, set of explored (node, cost) pairs **function** search(*s*, path) :

- if IsEnd(s):
 - update the minimum cost path
- for each action $a \in Actions(s)$:
 - if Succ(s, a) hasn't been explored at Cost(s, a) yet:
 - add (Succ(s, a), Cost(s, a)) to the explored set
 - extend path with Succ(s, a) and Cost(s, a)
 - recurse: search(Succ(s, a), path)

[live coding: backtracking search]

Adversarial Game-Playing

Can we model Connect Four as a search problem?

[modeling attempt on board]

Need to make some changes...

Modeling a game

Start state: $s_0 \in S$

Possible actions: $Actions(s) \subseteq A$

Transition model: $Succ(s, a) \in S$

Goal test: $lsEnd(s) \in \{True, False\}$

Agent utility: Utility(s) $\in \mathbb{R}$

Whose turn: $Player(s) \in P$

state space S, action set A, player set P, real numbers $\mathbb R$

Example: chess

 s_0 = starting chess board

Actions(s) = legal chess moves available to Player(s)

Succ(s, a) = board state resulting from taking action a

IsEnd(s) = whether s is a checkmate or stalemate

$$\text{Utility}(s) = \begin{cases} +\infty & \text{if white wins} \\ -\infty & \text{if black wins} \\ 0 & \text{otherwise} \end{cases}$$

$$\text{Player}(s) = \begin{cases} \text{white } & \text{if an even number of turns have passed} \\ \text{black } & \text{if an odd number of turns have passed} \end{cases}$$

Two key characteristics of games

Different players in control at different nodes — one maximizing player and one minimizing player.

All **utility is concentrated at terminal nodes** (i.e. leaves in a tree) — don't know whether a move is good or bad until the game is over.

What should you do?

- Given a game state s, what action in Actions(s) should you take?
- Depends on who you are assume you are the maximizing player, max
- max's best action depends on what min does on the next turn
- But min's best action depends on max's move on the next next turn
- ... which depends on min's move on the next next next turn
- And so on ...

[minimax game tree on board]

