Artificial Intelligence

CSC 665

tyler dae devlin



Search IV

2.15.2024







e Search: make decisions by looking ahead



Modeling: start state, actions, costs, transition model, goal test

Inference:
e Uninformed: backtracking, DFS, BFS, UCS

* Informed: greedy search and A* with heuristics via problem relaxation



A* Search

UCS

 Maintains a frontier of uniform PastCost
 Correct but slow.

Greedy search

 Chooses the node that minimizes A
* Incorrect but potentially fast.
A*
 Maintains a frontier of uniform PastCost + A

* Sometimes correct and potentially fast.



A*vs. Greedy

Problem: short-term greediness can get you into long-term trouble (true for all
ogreedy algorithms in computer science and in life).

Key insight: computing PastCost is easy (just accumulate edge costs), and helps us
realize when a prior greedy decision has led us astray.



A* can be wrong

o 100

AcCtion COStS

h



Whenis A* correct?

Definition: A heuristic is admissible if it never overestimates the cost to the
goal. That is, A(s) < FutureCost(s) for every s € S.

Theorem: A* with heuristic function 4 is correct if /1 is admissible.



Whenis A* correct?

Proof: For contradiction, assume A* returns a path with cost C, but the

optimal path has cost C* < C. Then there is a node s on the optimal path
that was not expanded by A*. Focusing on this node,

C < PastCost(s) + A(s)
< PastCost(s) + FutureCost(s)

— C*

This is a contradiction. Thus, A* returns an optimal path.



How fastis A*?

Theorem: A* explores all states s satisfying PastCost(s) < PastCost(s*) — A(s).
Proof: A* explores all states s satisfying PastCost(s) + /(s) < PastCost(s™)

Takeaway: Want /4 to be as large as possible, because this means we explore fewer
states. But can’t be too large or we lose admissibility (and thus correctness)!



Problem Relaxation

How to choose /?

Create a “relaxed” version of the problem by removing constraints.

Set the estimate /1 in the original problem to be the exact FutureCost in the
relaxed problem.

Such a heuristic is guaranteed to be admissible.

Example: for mazes, remove the constraint that you can’t travel through walls.
Then FutureCost(s) is simply the Manhattan distance from s to s *.

What is the relaxation for Google maps? for the Roomba?



Backtracking search (last time)

Global state: minimum cost path, set of explored nedes
function search(s, path) :
o if ISEnd(s) :

* update the minimum cost path

* for each action a € Actions(s) :

* if Succ(s, a) hasn’'t been explored yet:

* add it to the explored set
 extend path with Succ(s, a) and Cost(s, a)

* recurse: search(Succ(s, a), path)



Backtracking search (revised)

Global state: minimum cost path, set of explored (node, cost) pairs
function search(s, path) :
o if ISEnd(s) :
* update the minimum cost path
 for each action a € Actions(s) :
* if Succ(s, a) hasn’t been explored at Cost(s, a) yet:
* add (Succ(s, a), Cost(s, a)) to the explored set
 extend path with Succ(s, a) and Cost(s, a)

* recurse: search(Succ(s, a), path)



[live coding: backtracking search]



Adversarial Game-Playing



Connect Four

The Classic Vertical Four-In-A-Row Game

MILTON
BRADLEY
A

ol o e
RSl Gl ey




Can we model Connect Four as a search problem?



Imodeling attempt on board]



Need to make some changes...



Modeling a game

Start state: s, € S
Possible actions: Actions(s) C A
Transition model: Succ(s,a) € §

Goal test: IsEnd(s) € {True, False}

Agent utility: Utility(s) € |

Whose turn: Player(s) € P

state space S, action set A, player set P, real numbers |



Example: chess

so = starting chess board
Actions(s) = legal chess moves available to Player(s)
Succ(s, a) = board state resulting from taking action a

ISEnd(s) = whether s is a checkmate or stalemate

+ oo if white wins
Utility(s) = 4 —oo if black wins
0 otherwise
white if an even number of turns have passed

Player(s) = {

black if an odd number of turns have passed



Two key characteristics of games

Different players in control at different nodes — one maximizing player and one
minimizing player.

All utility is concentrated at terminal nodes (i.e. leaves in a tree) — don’t know
whether a move is good or bad until the game is over.



What should you do?

Given a game state s, what action in Actions(s) should you take?
Depends on who you are — assume you are the maximizing player, max
max’s best action depends on what min does on the next turn

But min’s best action depends on max’s move on the next next turn

... which depends on min’s move on the next next next turn

And so on ...



Iminimax game tree on board]



MIN




