
tyler dae devlin

Artificial Intelligence
CSC 665



Search IV
2.15.2024



Recap



• Search: make decisions by looking ahead


• Logic: deduce new facts from existing facts


• Constraints: find a way to satisfy a given specification


• Probability: reason quantitatively about uncertainty


• Learning: make future predictions from past observations



Search

Modeling: start state, actions, costs, transition model, goal test


Inference: 


• Uninformed: backtracking, DFS, BFS, UCS 


• Informed: greedy search and A* with heuristics via problem relaxation



A* Search
UCS 


• Maintains a frontier of uniform PastCost


• Correct but slow.


Greedy search 


• Chooses the node that minimizes 


• Incorrect but potentially fast.


A* 


• Maintains a frontier of uniform 


• Sometimes correct and potentially fast.

h

PastCost + h



A* vs. Greedy

Problem: short-term greediness can get you into long-term trouble (true for all 
greedy algorithms in computer science and in life).


Key insight: computing PastCost is easy (just accumulate edge costs), and helps us 
realize when a prior greedy decision has led us astray.



A* can be wrong

s0

s2

s⋆

s1

100

0

1 1

3 1
0

Action costs

h



When is A* correct?

Definition: A heuristic is admissible if it never overestimates the cost to the 
goal. That is,  for every .


Theorem: A* with heuristic function  is correct if  is admissible.

h(s) ≤ FutureCost(s) s ∈ S

h h



When is A* correct?

Proof: For contradiction, assume A* returns a path with cost , but the 
optimal path has cost . Then there is a node  on the optimal path 
that was not expanded by A*. Focusing on this node,


                                          


This is a contradiction. Thus, A* returns an optimal path.

C
C⋆ < C s

C < PastCost(s) + h(s)
≤ PastCost(s) + FutureCost(s)
= C⋆



How fast is A*?

Theorem: A* explores all states  satisfying .


Proof: A* explores all states  satisfying 


Takeaway: Want  to be as large as possible, because this means we explore fewer 
states. But can’t be too large or we lose admissibility (and thus correctness)!

s PastCost(s) ≤ PastCost(s⋆) − h(s)

s PastCost(s) + h(s) ≤ PastCost(s⋆)

h



Problem Relaxation

• How to choose ?


• Create a “relaxed” version of the problem by removing constraints.


• Set the estimate  in the original problem to be the exact FutureCost in the 
relaxed problem.


• Such a heuristic is guaranteed to be admissible.


• Example: for mazes, remove the constraint that you can’t travel through walls. 
Then  is simply the Manhattan distance from  to .


• What is the relaxation for Google maps? for the Roomba?

h

h

FutureCost(s) s s⋆



Backtracking search (last time)
Global state: minimum cost path, set of explored nodes


function 


• if 


• update the minimum cost path


• for each action 


• if  hasn’t been explored yet:


• add it to the explored set


• extend path with  and 


• recurse: 

search(s, path) :

IsEnd(s) :

a ∈ Actions(s) :

Succ(s, a)

Succ(s, a) Cost(s, a)

search(Succ(s, a), path)



Backtracking search (revised)
Global state: minimum cost path, set of explored (node, cost) pairs


function 


• if 


• update the minimum cost path


• for each action 


• if  hasn’t been explored at  yet:


• add  to the explored set


• extend path with  and 


• recurse: 

search(s, path) :

IsEnd(s) :

a ∈ Actions(s) :

Succ(s, a) Cost(s, a)

(Succ(s, a), Cost(s, a))

Succ(s, a) Cost(s, a)

search(Succ(s, a), path)



[live coding: backtracking search]



Adversarial Game-Playing





Can we model Connect Four as a search problem?



[modeling attempt on board]



Need to make some changes…



Modeling a game
Start state: 


Possible actions: 


Transition model: 


Goal test: 


Agent utility: 


Whose turn: 

s0 ∈ S

Actions(s) ⊆ A

Succ(s, a) ∈ S

IsEnd(s) ∈ {True, False}

Utility(s) ∈ ℝ

Player(s) ∈ P

state space , action set , player set , real numbers S A P ℝ



Example: chess
starting chess board


legal chess moves available to 


board state resulting from taking action 


whether  is a checkmate or stalemate





s0 =

Actions(s) = Player(s)

Succ(s, a) = a

IsEnd(s) = s

Utility(s) =
+∞ if white wins
−∞ if black wins
0 otherwise

Player(s) = {white if an even number of turns have passed
black if an odd number of turns have passed



Two key characteristics of games

Different players in control at different nodes — one maximizing player and one 
minimizing player.


All utility is concentrated at terminal nodes (i.e. leaves in a tree) — don’t know 
whether a move is good or bad until the game is over.



What should you do?

• Given a game state , what action in  should you take?


• Depends on who you are — assume you are the maximizing player, max


• max’s best action depends on what min does on the next turn


• But min’s best action depends on max’s move on the next next turn


• … which depends on min’s move on the next next next turn


• And so on …

s Actions(s)



[minimax game tree on board]




