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Recap



• Search: make decisions by looking ahead


• Logic: deduce new facts from existing facts


• Constraints: find a way to satisfy a given specification


• Probability: reason quantitatively about uncertainty


• Learning: make future predictions from past observations



Search

Modeling: start state, actions, cost, transition model, goal test


Inference: backtracking, DFS, BFS, UCS — all uninformed search algorithms



Backtracking search (last time)
Global state: minimum cost path, set of explored nodes


function 


• if 


• update the minimum cost path


• for each action 


• if  hasn’t been explored yet:


• add it to the explored set


• extend path with  and 


• recurse: 

search(s, path) :

IsEnd(s) :

a ∈ Actions(s) :

Succ(s, a)

Succ(s, a) Cost(s, a)

search(Succ(s, a), path)



Backtracking search (last time)
Global state: minimum cost path, set of explored (node, cost) pairs


function 


• if 


• update the minimum cost path


• for each action 


• if  hasn’t been explored at  yet:


• add  to the explored set


• extend path with  and 


• recurse: 

search(s, path) :

IsEnd(s) :

a ∈ Actions(s) :

Succ(s, a) Cost(s, a)

(Succ(s, a), Cost(s, a))

Succ(s, a) Cost(s, a)

search(Succ(s, a), path)



Uniform Cost Search (UCS, Dijkstra’s Algorithm)
• Start with a frontier that contains , and an empty set of explored nodes


• While the frontier is nonempty:


• Pop the node  with smallest priority  from the frontier


• If  return solution


• Add  to the explored set


• For each , 


• Get 


• If  is already explored: continue


• Add  to frontier with priority 

s0

s p

IsEnd(s) :

s

a ∈ Actions(s)

s′￼ = Succ(s, a)

s′￼

s′￼ p + Cost(s, a)



[UCS example on board]



Correctness of UCS
Theorem: Assume action costs are non-negative. If a node  is popped from the 
frontier with priority , then  is the cost of the min-cost path from  to .


Proof: Take CSC 510 (or come to office hours).


Corollary: UCS computes the min-cost path to the goal node.

s
p p s0 s



Using domain knowledge

• So far: uninformed search


• Algorithms that don’t use problem-specific information


• Pro: completely generic — same algorithm works for all search problems


• Con: can’t useful domain knowledge


• Next: informed search


• Use a heuristic function  to estimate progress toward goalh : S → ℝ



Informed search



Probably not good 
to start driving 
toward Marin



Probably not good 
to turn left



Starting in the upper left state, probably not 
good to move right before sucking



How do we know?



s0 s⋆

Uniform cost frontier 
is a good idea.

But why bother 
searching in this 
direction?



Heuristic functions

Consider getting from  to  on a path through .s0 s⋆ s

s0 … s … s⋆

PastCost(s) FutureCost(s)

UCS and BFS work by maintaining a frontier of uniform PastCost.


FutureCost is unknown, otherwise we could immediately find an optimal solution.


But we can estimate  with a simple heuristic .FutureCost(s) h(s)



Naïve Idea

• If we had access to FutureCost, then an optimal algorithm is to always expand the 
node that minimizes FutureCost.


• If all we have is an estimate , then why not pick the node that minimizes ?


• This is called greedy search.

h h



[greedy search examples]



A* Search
UCS 


• Maintains a frontier of uniform PastCost


• Correct but slow.


Greedy search 


• Chooses the node that minimizes 


• Incorrect but potentially fast.


A* 


• Maintains a frontier of uniform 


• Sometimes correct and potentially fast.

h

PastCost + h



A* vs. Greedy

Problem: short-term greediness can get you into long-term trouble (true for all 
greedy algorithms in computer science and in life).


Key insight: computing PastCost is easy (just accumulate edge costs), and helps us 
realize when a prior greedy decision has led us astray.



[A* maze example]



A* can be wrong
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