Artificial Intelligence

CSC 665

tyler dae devlin

Search I

2.13.2024

e Search: make decisions by looking ahead

Modeling: start state, actions, cost, transition model, goal test

Inference: backtracking, DFS, BFS, UCS — all uninformed search algorithms

Backtracking search (last time)

Global state: minimum cost path, set of explored nedes
function search(s, path) :
o if ISEnd(s) :

* update the minimum cost path

* for each action a € Actions(s) :

* if Succ(s, a) hasn’'t been explored yet:

* add it to the explored set
 extend path with Succ(s, a) and Cost(s, a)

* recurse: search(Succ(s, a), path)

Backtracking search (last time)

Global state: minimum cost path, set of explored (node, cost) pairs
function search(s, path) :
o if ISEnd(s) :
* update the minimum cost path
 for each action a € Actions(s) :
* if Succ(s, a) hasn’t been explored at Cost(s, a) yet:
* add (Succ(s, a), Cost(s, a)) to the explored set
 extend path with Succ(s, a) and Cost(s, a)

* recurse: search(Succ(s, a), path)

Uniform Cost Search (UCS, Dijkstra’s Algorithm)

* Start with a frontier that contains s, and an empty set of explored nodes

* While the frontier is nonempty:
* Pop the node s with smallest priority p from the frontier
* If IsEnd(s) : return solution
* Add s to the explored set
* For each a € Actions(s),
* Get s’ = Succ(s, a)
 If s'is already explored: continue

* Add s’ to frontier with priority p + Cost(s, a)

[UCS example on board]

Correctness of UCS

Theorem: Assume action costs are non-negative. If a node s is popped from the
frontier with priority p, then p is the cost of the min-cost path from s, to s.

Proof: Take CSC 510 (or come to office hours).

Corollary: UCS computes the min-cost path to the goal node.

Using domain knowledge

* So far: uninformed search
* Algorithms that don’t use problem-specific information

* Pro: completely generic — same algorithm works for all search problems

» Con: can’t useful domain knowledge

 Next: informed search

* Use a heuristic function /2 : § — R to estimate progress toward goal

Informed search

™ 1 vrinda : 680
-Golden Gate Berkeley 5%

‘National: : Alamo
Recreation. » - Emeryville Moraga N
Area 80, (13) anville Blackhawk
Ve ' Oakland
15 @
g B
San Francisco Alameda
San Ramon
San Francisco gD 280, S Loand e X
State University Dublin
DaltlCit Castro Valley 580, Snar
alyguIty Livermore
South'San hayward Pleasanton
.%ancisco & 57 min
Pacifica San'Bruno 56 miles VA A
TR D 238
() Union City Sunol Mgn
P
b
, 680
- N I\-Tremont
‘ ~ 1 Newark
| G 47 min |
El Granada 49.3 miles |
Ve
Half (35) EastPalo Alto
Moon Bay o
S Palo Alto,
Mountain
&= 46 min View L
@ | 50.1 m|Ie$5> Joseph
. D. Grant
San Gregorio County. Park
Campbell
A Loma Mar Saratoga
Pescadero (17)

Alamitos
@ @ Los Gatos

Probably not good
to start driving
toward Marin

=
S
S
S0
~—)
o
SRS
= 9
e

s =
o 5
Ot
A~ S

R
LT AL

Starting in the upper left state, probably not
good to move right before sucking

How do we know?

Uniform cost frontier
is a good idea.

But why bother
searching in this
direction?

Heuristic functions

Consider getting from s, to s* on a path through s.

PastCost(s) FutureCost(s)

UCS and BFS work by maintaining a frontier of uniform PastCost.

FutureCost is unknown, otherwise we could immediately find an optimal solution.

But we can estimate FutureCost(s) with a simple heuristic /(s).

Naive Idea

* If we had access to FutureCost, then an optimal algorithm is to always expand the
node that minimizes FutureCost.

* If all we have is an estimate A, then why not pick the node that minimizes A?

* This is called greedy search.

[greedy search examples]

A* Search

UCS

 Maintains a frontier of uniform PastCost
 Correct but slow.

Greedy search

 Chooses the node that minimizes A
* Incorrect but potentially fast.
A*
 Maintains a frontier of uniform PastCost + A

* Sometimes correct and potentially fast.

A*vs. Greedy

Problem: short-term greediness can get you into long-term trouble (true for all
ogreedy algorithms in computer science and in life).

Key insight: computing PastCost is easy (just accumulate edge costs), and helps us
realize when a prior greedy decision has led us astray.

[A*m
az
e examp
le]

A* can be wrong

o 100

AcCtion COStS

h

