
tyler dae devlin

Artificial Intelligence
CSC 665

Search III
2.13.2024

Recap

• Search: make decisions by looking ahead

• Logic: deduce new facts from existing facts

• Constraints: find a way to satisfy a given specification

• Probability: reason quantitatively about uncertainty

• Learning: make future predictions from past observations

Search

Modeling: start state, actions, cost, transition model, goal test

Inference: backtracking, DFS, BFS, UCS — all uninformed search algorithms

Backtracking search (last time)
Global state: minimum cost path, set of explored nodes

function

• if

• update the minimum cost path

• for each action

• if hasn’t been explored yet:

• add it to the explored set

• extend path with and

• recurse:

search(s, path) :

IsEnd(s) :

a ∈ Actions(s) :

Succ(s, a)

Succ(s, a) Cost(s, a)

search(Succ(s, a), path)

Backtracking search (last time)
Global state: minimum cost path, set of explored (node, cost) pairs

function

• if

• update the minimum cost path

• for each action

• if hasn’t been explored at yet:

• add to the explored set

• extend path with and

• recurse:

search(s, path) :

IsEnd(s) :

a ∈ Actions(s) :

Succ(s, a) Cost(s, a)

(Succ(s, a), Cost(s, a))

Succ(s, a) Cost(s, a)

search(Succ(s, a), path)

Uniform Cost Search (UCS, Dijkstra’s Algorithm)
• Start with a frontier that contains , and an empty set of explored nodes

• While the frontier is nonempty:

• Pop the node with smallest priority from the frontier

• If return solution

• Add to the explored set

• For each ,

• Get

• If is already explored: continue

• Add to frontier with priority

s0

s p

IsEnd(s) :

s

a ∈ Actions(s)

s′￼ = Succ(s, a)

s′￼

s′￼ p + Cost(s, a)

[UCS example on board]

Correctness of UCS
Theorem: Assume action costs are non-negative. If a node is popped from the
frontier with priority , then is the cost of the min-cost path from to .

Proof: Take CSC 510 (or come to office hours).

Corollary: UCS computes the min-cost path to the goal node.

s
p p s0 s

Using domain knowledge

• So far: uninformed search

• Algorithms that don’t use problem-specific information

• Pro: completely generic — same algorithm works for all search problems

• Con: can’t useful domain knowledge

• Next: informed search

• Use a heuristic function to estimate progress toward goalh : S → ℝ

Informed search

Probably not good
to start driving
toward Marin

Probably not good
to turn left

Starting in the upper left state, probably not
good to move right before sucking

How do we know?

s0 s⋆

Uniform cost frontier
is a good idea.

But why bother
searching in this
direction?

Heuristic functions

Consider getting from to on a path through .s0 s⋆ s

s0 … s … s⋆

PastCost(s) FutureCost(s)

UCS and BFS work by maintaining a frontier of uniform PastCost.

FutureCost is unknown, otherwise we could immediately find an optimal solution.

But we can estimate with a simple heuristic .FutureCost(s) h(s)

Naïve Idea

• If we had access to FutureCost, then an optimal algorithm is to always expand the
node that minimizes FutureCost.

• If all we have is an estimate , then why not pick the node that minimizes ?

• This is called greedy search.

h h

[greedy search examples]

A* Search
UCS

• Maintains a frontier of uniform PastCost

• Correct but slow.

Greedy search

• Chooses the node that minimizes

• Incorrect but potentially fast.

A*

• Maintains a frontier of uniform

• Sometimes correct and potentially fast.

h

PastCost + h

A* vs. Greedy

Problem: short-term greediness can get you into long-term trouble (true for all
greedy algorithms in computer science and in life).

Key insight: computing PastCost is easy (just accumulate edge costs), and helps us
realize when a prior greedy decision has led us astray.

[A* maze example]

A* can be wrong

s0

s2

s⋆

s1

100

0

1 1

3 1
0

Action costs

h

