
tyler dae devlin

Artificial Intelligence
CSC 665

Administrivia

• Who in this room is not enrolled?

• Office hours are in effect: before class on Tuesdays, after class on
Thursdays @ Thornton 434

• Homework 0 due tomorrow at 11:59 pm — earn extra credit and
calibrate your level of preparation

• All homeworks can be submitted up to 5 days late, with a 10%
penalty per day

• You get one late waiver during the semester to apply (retroactively)
to any late homework, eliminating the late penalty

• Midterms are in-person and cannot be made up

Search I
2.6.2024

• Search: make decisions by looking ahead

• Logic: deduce new facts from existing facts

• Constraints: find a way to satisfy a given specification

• Probability: reason quantitatively about uncertainty

• Learning: make future predictions from past observations

Goat example

[search tree for goat problem on board]

Modeling

Modeling a search problem

Start state:

Possible actions:

Action cost:

Transition model:

Goal test:

s0

Actions(s)

Cost(s, a)

Succ(s, a)

IsEnd(s)

Modeling a search problem

Start state:

Possible actions:

Action cost:

Transition model:

Goal test:

s0 ∈ S

Actions(s) ⊆ A

Cost(s, a) ∈ ℝ≥0

Succ(s, a) ∈ S

IsEnd(s) ∈ {True, False}

state space , action set , non-negative real numbers S A ℝ≥0

Search graph

• The functions of the search problem induce a graph

• Nodes are states in

• There is a directed edge if for some action

• Edges are labeled with the costs given by

• Goal nodes are determined by

S

s → s′￼ Succ(s, a) = s′￼ a ∈ Actions(s)

Cost(s, a)

IsEnd(s)

[live coding: modeling search]

Inference

The inference problem

Given: a search graph

Find: a minimum cost path from start to finish in the graph

Backtracking search
Global state: minimum cost path, set of explored (node, cost) pairs

function

• if

• update the minimum cost path

• for each action

• if hasn’t been explored at yet:

• add to the explored set

• extend path with and

• recurse:

search(s, path) :

IsEnd(s) :

a ∈ Actions(s) :

Succ(s, a) Cost(s, a)

(Succ(s, a), Cost(s, a))

Succ(s, a) Cost(s, a)

search(Succ(s, a), path)

