## CSC 665: Artificial Intelligence

## Homework 6

By turning in this assignment, I agree to abide by SFSU's academic integrity code and declare that all of my solutions are my own work.

## 1 Regularization

In this homework, you will reproduce the experimental results shown on the slides entitled "The sales pitch" from the 11/28 lecture.

First recall the setup. Our target function is  $f(x) = \sin(\pi x)$  for  $x \in [-1, 1]$ , meaning that this is a regression problem. We assume our training dataset contains just n = 2 examples sampled uniformly at random from [-1, 1]. There is no noise in this problem, so training examples take the form (x, f(x)).

We will train a linear regression model using gradient descent on the sum-of-squared-errors cost function, both with and without regularization.

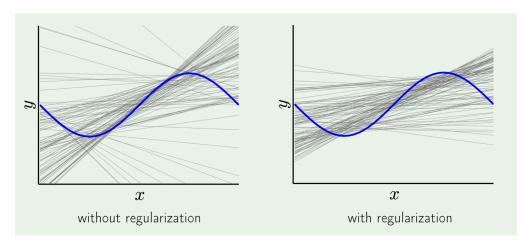
a. (10 points) The sum-of-squared-errors cost function is

$$C(w) = \sum_{i=1}^{n} (y_i - (w_0 + w_1 x_i))^2$$
  
=  $(y_1 - (w_0 + w_1 x_1))^2 + (y_2 - (w_0 + w_1 x_2))^2$ ,

since n = 2. Compute  $\frac{d}{dw_0}C(w)$  and  $\frac{d}{dw_1}C(w)$ .

b. (10 points) If we add an  $\ell_2$  regularization term to our cost function, we obtain the augmented cost function

$$\tilde{C}(w) = \sum_{i=1}^{n} (y_i - (w_0 + w_1 x_i))^2 + \lambda \sum_{j=0}^{p} w_j^2$$


$$= (y_1 - (w_0 + w_1 x_1))^2 + (y_2 - (w_0 + w_1 x_2))^2 + \lambda (w_0^2 + w_1^2).$$

Compute  $\frac{d}{dw_0}\tilde{C}(w)$  and  $\frac{d}{dw_1}\tilde{C}(w)$ .

- c. (10 points) Implement the function fit\_without\_reg which finds values of  $w_0$  and  $w_1$  that minimize C(w). Note that there is a unique line that perfectly fits two given points, and you should find a formula for this line rather than perform gradient descent on C(w).
- d. (10 points) Implement the function fit\_with\_reg which finds values of  $w_0$  and  $w_1$  that minimize  $\tilde{C}(w)$ . You should use gradient descent with a step size of  $\eta = 0.05$ , setting  $\lambda = 1$ , and making 1000 gradient descent updates starting from  $w_0 = w_1 = 0$ .
- e. (10 points) Perform the following experiment 1000 times. Sample two points from f using the provided function generate\_training\_examples. Call fit\_without\_reg and fit\_with\_reg (using  $\lambda = 1$ ) on

these points to find values for  $w_0$  and  $w_1$  with and without regularization. Finally, call test\_error to estimate the out-of-sample error of these two hypotheses. Report the two test errors you find, averaged over the 1000 trials of this experiment.

f. (10 points extra credit) Create a version of this figure from the slides by plotting the line (use a thin line width and low alpha value) corresponding the values you obtain for  $w_0$  and  $w_1$  in each of the 1000 trials you carry out in part (e). Include the target function f in your plots as shown below.



## Submission

Submission is done on Canvas. You should submit two files: one containing your solutions to the written problems and one for the coding problems.

- Submit your written solutions in a single PDF file with your name at the top. Make sure to clearly indicate the number and letter of the problem corresponding to each solution. It is okay to hand-write your solutions and then scan them into a PDF, but only if your handwriting is legible.
- Submit your coding solutions in a file named regularization.py.