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* Learning: make future predictions from past observations
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Overfitting



Overfitting by example

In practice, datasets often contains noise

y=Jf(x)+¢€ (€~ Ppoise)
On the right:

* fisa2nd degree polynomial

e £ ~ N (0,06°) for small o

Since the training dataset only contains § points, a 4th

degree polynomial fits perfectly

l.e. Ctrain = () but Ctest will be large

Our hypothesis failed to generalize because it fits the noise
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Another example

Consider training a neural network by stochastic
gradient descent

nNo

An epoch is a pass through the entire training dataset

After each epoch, measure error/loss/cost of current ]l \
hypothesis on both training dataset (F;,) and held-out N
test set (EOUt) i \ Early stopping Eout
S =
° ® \Kg_l/
Before blue line: fitting .
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(In many modern deep learning models this figure is
incomplete due to “double descent”)



A simple definition

» Overfitting happens when you have low training cost, but high test cost
* Overfitting means your hypothesis fails to generalize to new unseen examples

* Overfitting happens because you have fit the data more than is warranted — you
are fitting the noise



Case study
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Two tits for each target
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Two tits for each target

O Data
2nd Order Fit
— 10th Order Fit

O Data
2nd Order Fit
— 10th Order Fit

X X
Noisy low-order target Noiseless high-order target
2nd Order 10th Order 2nd Order  10th Order
E;, 0.050 0.034 E;, 0.029 107
Eout 0.127 9.00 Eout 0.120 7680




Stochastic noise

e Stochastic noise is often modeled as an
additive random variable: y = f(x) + ¢

* Fitting stochastic noise is bad, because it pulls
your hypothesis away from the target f

* The best estimate of f(x) + € is f(x)




Deterministic noise

Deterministic noise is the part of f that
F cannot capture: f(x) — h™(x)

h™ is the best hypothesis from #,
assuming “infinite data”

But an & € # learned from any finite
dataset may be very far from 2 *

How far depends on the dataset

Hence, “noise” T



Preventing overfitting

* Regularization: deliberately restrict the complexity of your chosen / so that you
reduce its ability to fit noise. “Putting on the brakes.”

 Validation: use a held-out dataset to directly estimate the thing you care about,
which is the error rate on unseen examples. “Checking the bottom line.”



Regularization



Example: sine target

f:-1,1]-R f(x) = sin(7x)

Only two training examples! N = 2

Two models used for learning:
H()Z h(ZB) = b
Hi: h(x)=az+0b

Which is better, Hy or H? .
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and the winner is ...

var = (0.25

bias = 0.21

var = 1.69
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The sales pitch

with regularization

without regularization



The sales pitch

without regularization with regularization

bias = 0.21 var = 1.69 bias = 0.23 var = 0.33



Preventing overfitting

Z ( can be thought of as a constrained version of Z | in which w = O in
h(x) =wx+b

This is a hard constraint on the model parameters

Soft constraint: consider all hypotheses wx + b such that w?* < A for some budget

hyperparameter A

w can be nonzero, but not too big

n
. Equivalently, minimize an augmented cost function C(2) = Z (h(x;) — yi)2 + Aw?

=1



Controlling the degree of fitting

* Ais aregularization hyperparameter that controls the tradeoff between minimizing
training error and using “reasonable” weights

* Large A corresponds to small A

A=0 A = 0.0001 A= 0.01 A=1

o Data
— Target

—Fit

XL X X X

overfitting o o o o underfitting



The regularizer, generalized

* More generally, if there are many weight parameters (as in a d degree polynomial
n

d
regression model), C(h) = Z (h(x) — y,)* + A Z wj2
i=1 j=1
d

_ This is called 7, regularization, because Z wj = ||w||* is the squared £, norm of

j=1
the weight vector



More noise requires more regularization
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Early stopping is regularization

3.5

* The more SGD updates you make, the
more opportunity the parameters have

to become very large ER
* Early stopping is one way to prevent st
this growth in model complexity
I Early stopping Eo/ut
* How do you know when to stop? N

0.5r

Validation!
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