Artificial Intelligence csc 665

Machine Learning V

11.28.2023

- Search: make decisions by looking ahead
- Logic: deduce new facts from existing facts
- Constraints: find a way to satisfy a given specification
- Probability: reason quantitatively about uncertainty
- Learning: make future predictions from past observations

Overfitting

Overfitting by example

- In practice, datasets often contains noise
- $y = f(x) + \varepsilon$ $(\varepsilon \sim P_{\text{noise}})$
- On the right:
 - f is a 2nd degree polynomial
 - $\varepsilon \sim \mathcal{N}(0, \sigma^2)$ for small σ
- Since the training dataset only contains 5 points, a 4th degree polynomial fits perfectly
- I.e. $C_{\text{train}} = 0$ but C_{test} will be large
- Our hypothesis failed to generalize because it fits the noise

Another example

- Consider training a neural network by stochastic gradient descent
- An epoch is a pass through the entire training dataset
- After each epoch, measure error/loss/cost of current hypothesis on both training dataset ($E_{\rm in}$) and held-out test set ($E_{\rm out}$)
- Before blue line: fitting
- After blue line: overfitting
- (In many modern deep learning models this figure is incomplete due to "double descent")

A simple definition

- Overfitting happens when you have low training cost, but high test cost
- Overfitting means your hypothesis fails to generalize to new unseen examples
- Overfitting happens because you have fit the data more than is warranted you are **fitting the noise**

Case study

Two fits for each target

Two fits for each target

Noisy low-order target

	2nd Order	10th Order
$\overline{E_{ m in}}$	0.050	0.034
$E_{ m out}$	0.127	9.00

Noiseless high-order target

	2nd Order	10th Order
$E_{ m in}$	0.029	10^{-5}
$E_{ m out}$	0.120	7680

Stochastic noise

- Stochastic noise is often modeled as an additive random variable: $y = f(x) + \varepsilon$
- Fitting stochastic noise is bad, because it pulls your hypothesis away from the target f
- The best estimate of $f(x) + \varepsilon$ is f(x)

Deterministic noise

- Deterministic noise is the part of f that \mathcal{H} cannot capture: $f(x) h^*(x)$
- h^* is the best hypothesis from \mathcal{H} , assuming "infinite data"
- But an $h \in \mathcal{H}$ learned from any finite dataset may be very far from h^*
- How far depends on the dataset
- Hence, "noise"

Preventing overfitting

- **Regularization:** deliberately restrict the complexity of your chosen h so that you reduce its ability to fit noise. "Putting on the brakes."
- Validation: use a held-out dataset to directly estimate the thing you care about, which is the error rate on unseen examples. "Checking the bottom line."

Regularization

Example: sine target

$$f:[-1,1] \to \mathbb{R} \qquad f(x) = \sin(\pi x)$$

Only two training examples! $\,N=2\,$

Two models used for learning:

$$\mathcal{H}_0$$
: $h(x) = b$

$$\mathcal{H}_1$$
: $h(x) = ax + b$

Which is better, \mathcal{H}_0 or \mathcal{H}_1 ?

and the winner is ...

The sales pitch

The sales pitch

Preventing overfitting

- \mathcal{H}_0 can be thought of as a constrained version of \mathcal{H}_1 in which w=0 in h(x)=wx+b
- This is a hard constraint on the model parameters
- Soft constraint: consider all hypotheses wx + b such that $w^2 \le A$ for some budget hyperparameter A
- w can be nonzero, but not too big
- Equivalently, minimize an augmented cost function $C(h) = \sum_{i=1}^{\infty} (h(x_i) y_i)^2 + \lambda w^2$

Controlling the degree of fitting

- λ is a regularization hyperparameter that controls the tradeoff between minimizing training error and using "reasonable" weights
- Large λ corresponds to small A

The regularizer, generalized

- More generally, if there are many weight parameters (as in a d degree polynomial regression model), $C(h) = \sum_{i=1}^{n} (h(x_i) y_i)^2 + \lambda \sum_{i=1}^{d} w_i^2$
- . This is called ℓ_2 regularization, because $\sum_{j=1}^a w_d^2 = \|w\|^2$ is the squared ℓ_2 norm of the weight vector

More noise requires more regularization

Stochastic noise

Deterministic noise

Early stopping is regularization

- The more SGD updates you make, the more opportunity the parameters have to become very large
- Early stopping is one way to prevent this growth in model complexity
- How do you know when to stop?
 Validation!

