# Artificial Intelligence csc 665

## Machine Learning IV

11.7.2023

- Search: make decisions by looking ahead
- Logic: deduce new facts from existing facts
- Constraints: find a way to satisfy a given specification
- Probability: reason quantitatively about uncertainty
- Learning: make future predictions from past observations

#### **UNKNOWN TARGET FUNCTION**

(ideal credit approval function)

#### TRAINING EXAMPLES

$$(\mathbf{x}_{1}, y_{1}), \dots, (\mathbf{x}_{N}, y_{N})$$

(historical records of credit customers)



(set of candidate formulas)

### [gradient descent on board]

### Generalization

### Beyond the training data

- ERM tells us how to pick a good hypothesis to fit a training dataset
- But fitting the training data is not the real goal
- Want a hypothesis *h* that approximates the target function *f* on *new unseen examples*
- I.e., want an h that generalizes
- This is only possible if the training data is **representative** of examples we are likely to see in the future



### Evaluation

- Testing for generalization is straightforward
- Partition dataset into two groups: training dataset and testing dataset
- Use only training set to pick an  $h \in \mathcal{H}$
- Once you've selected a candidate h, use testing set to obtain an unbiased estimate of performance (cost or error)
- Often, training error will be lower than testing error
- But if the gap is small, you have good generalization
- Good generalization is the central goal of machine learning

### Approximation-generalization tradeoff

- Goal is low testing error  $C_{\text{test}}$
- Can decompose test error into
  - 1. **Bias:** how well  $\mathcal{H}$  can approximate f
  - 2. Variance: wow well we can zoom in on a good  $h \in \mathcal{H}$
- Usually when  $\mathcal{H}$  is more complex, (1) is easier but (2) is harder
- I.e., a more complex  ${\mathcal H}$  has lower bias, but higher variance
- It's possible to make this decomposition mathematically precise











#### Example: sine target

$$f:[-1,1] \to \mathbb{R} \qquad f(x) = \sin(\pi x)$$

Only two training examples!  $\,N=2\,$ 

Two models used for learning:

$$\mathcal{H}_0$$
:  $h(x) = b$ 

$$\mathcal{H}_1$$
:  $h(x) = ax + b$ 

Which is better,  $\mathcal{H}_0$  or  $\mathcal{H}_1$ ?





### Approximation - $\mathcal{H}_0$ versus $\mathcal{H}_1$

 $\mathcal{H}_{0}$ 





### Learning - $\mathcal{H}_0$ versus $\mathcal{H}_1$

 $\mathcal{H}_0$ 





 $\mathcal{H}_1$ 

### Bias and variance - $\mathcal{H}_0$



### Bias and variance - $\mathcal{H}_1$



#### and the winner is ...



#### Lesson learned

Match the 'model complexity'

to the data resources, not to the target complexity