Artificial Intelligence csc 665

Machine Learning IV

11.7.2023

- Search: make decisions by looking ahead
- Logic: deduce new facts from existing facts
- Constraints: find a way to satisfy a given specification
- Probability: reason quantitatively about uncertainty
- Learning: make future predictions from past observations

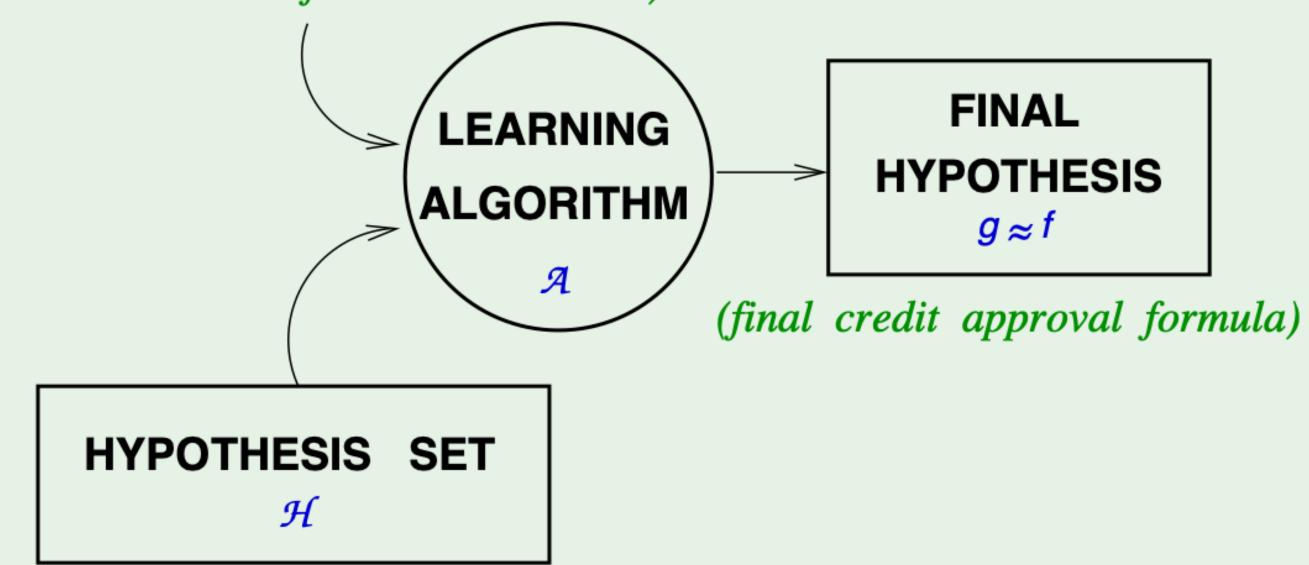
UNKNOWN TARGET FUNCTION

(ideal credit approval function)

TRAINING EXAMPLES

$$(\mathbf{x}_{1}, y_{1}), \dots, (\mathbf{x}_{N}, y_{N})$$

(historical records of credit customers)



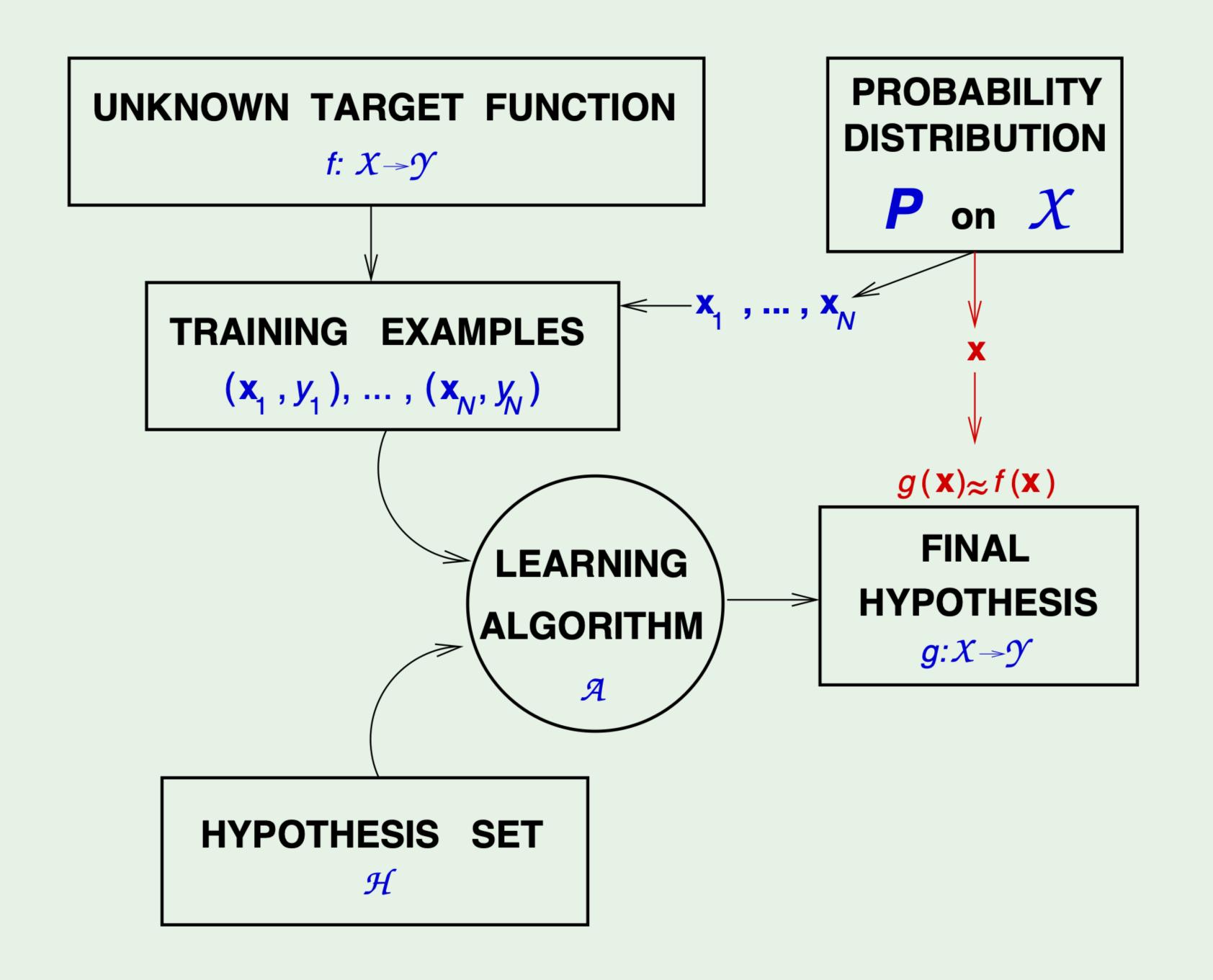
(set of candidate formulas)

[gradient descent on board]

Generalization

Beyond the training data

- ERM tells us how to pick a good hypothesis to fit a training dataset
- But fitting the training data is not the real goal
- Want a hypothesis *h* that approximates the target function *f* on *new unseen examples*
- I.e., want an h that generalizes
- This is only possible if the training data is **representative** of examples we are likely to see in the future

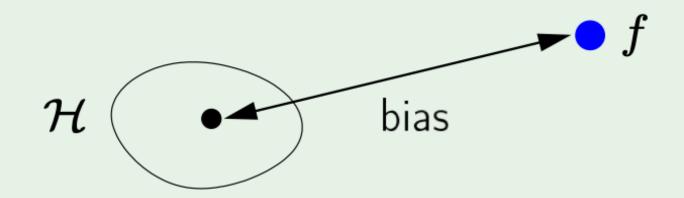


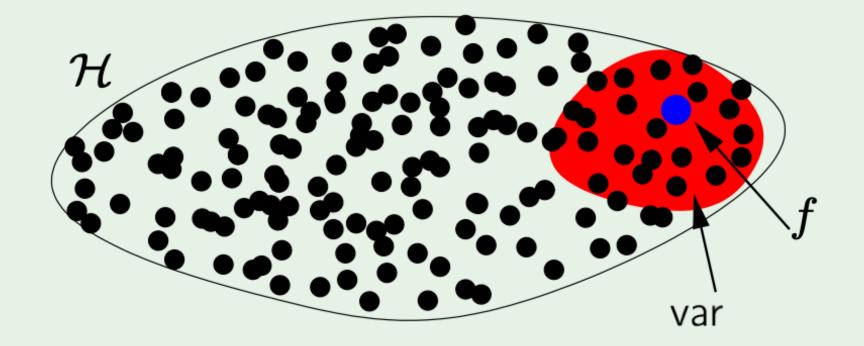
Evaluation

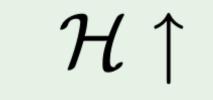
- Testing for generalization is straightforward
- Partition dataset into two groups: training dataset and testing dataset
- Use only training set to pick an $h \in \mathcal{H}$
- Once you've selected a candidate h, use testing set to obtain an unbiased estimate of performance (cost or error)
- Often, training error will be lower than testing error
- But if the gap is small, you have good generalization
- Good generalization is the central goal of machine learning

Approximation-generalization tradeoff

- Goal is low testing error C_{test}
- Can decompose test error into
 - 1. **Bias:** how well \mathcal{H} can approximate f
 - 2. Variance: wow well we can zoom in on a good $h \in \mathcal{H}$
- Usually when \mathcal{H} is more complex, (1) is easier but (2) is harder
- I.e., a more complex ${\mathcal H}$ has lower bias, but higher variance
- It's possible to make this decomposition mathematically precise







Example: sine target

$$f:[-1,1] \to \mathbb{R} \qquad f(x) = \sin(\pi x)$$

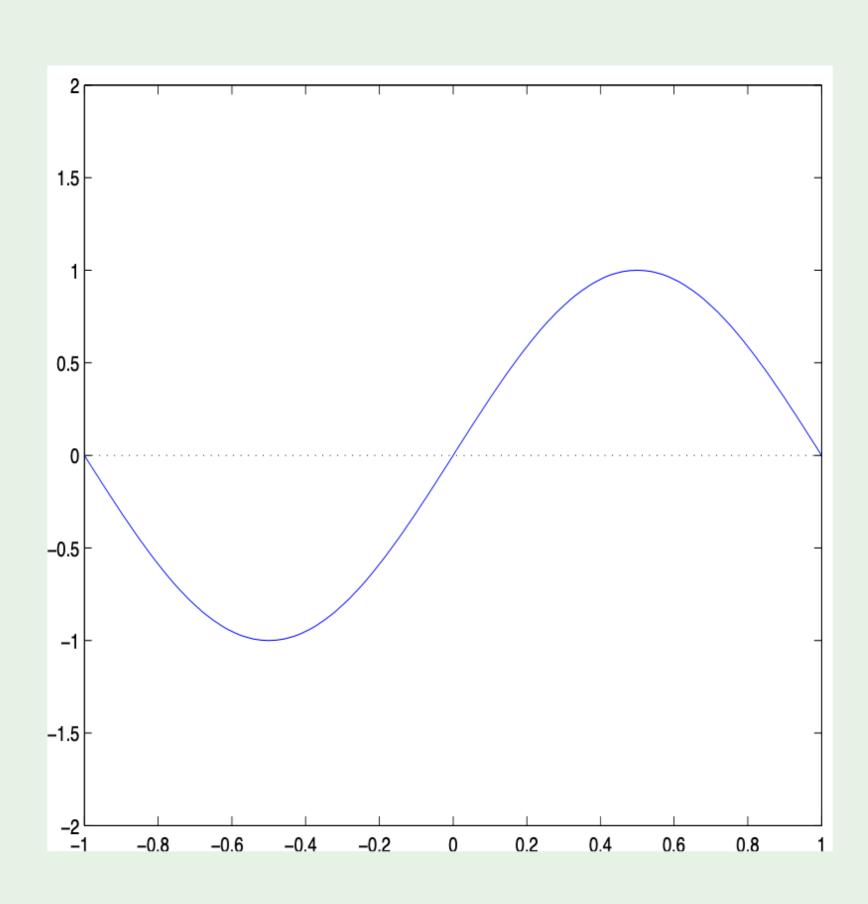
Only two training examples! $\,N=2\,$

Two models used for learning:

$$\mathcal{H}_0$$
: $h(x) = b$

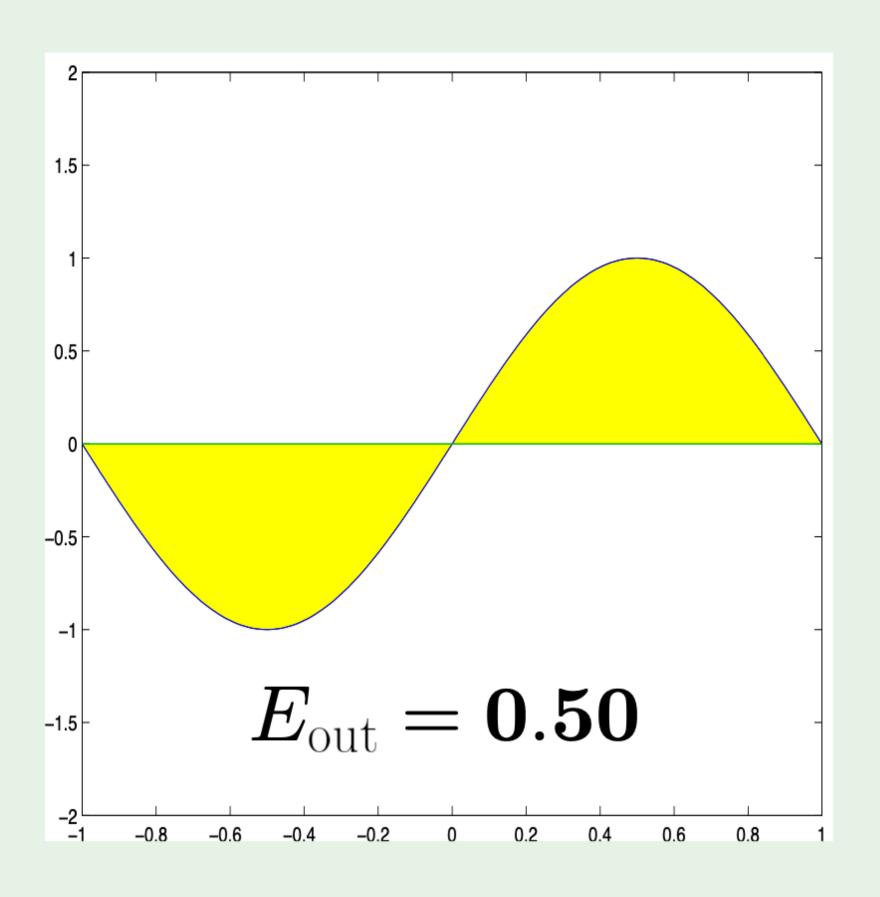
$$\mathcal{H}_1$$
: $h(x) = ax + b$

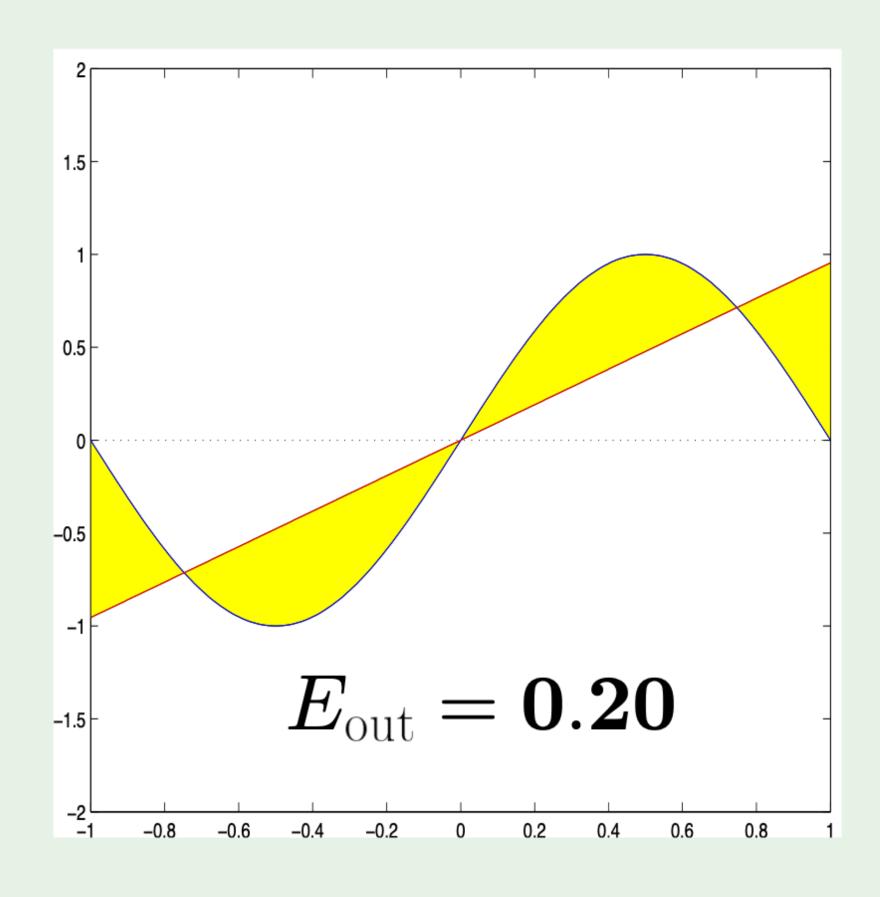
Which is better, \mathcal{H}_0 or \mathcal{H}_1 ?



Approximation - \mathcal{H}_0 versus \mathcal{H}_1

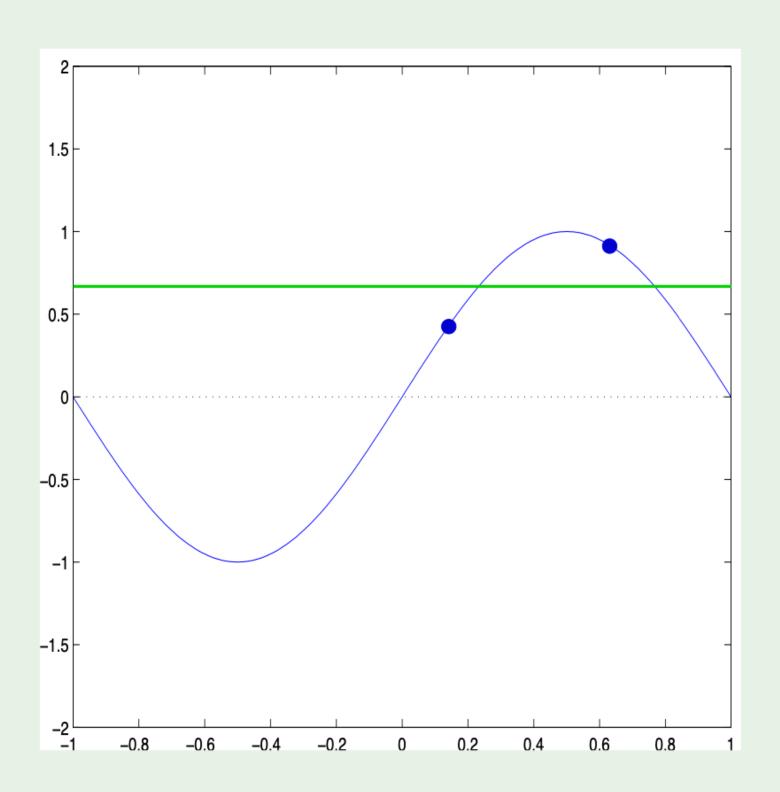
 \mathcal{H}_{0}

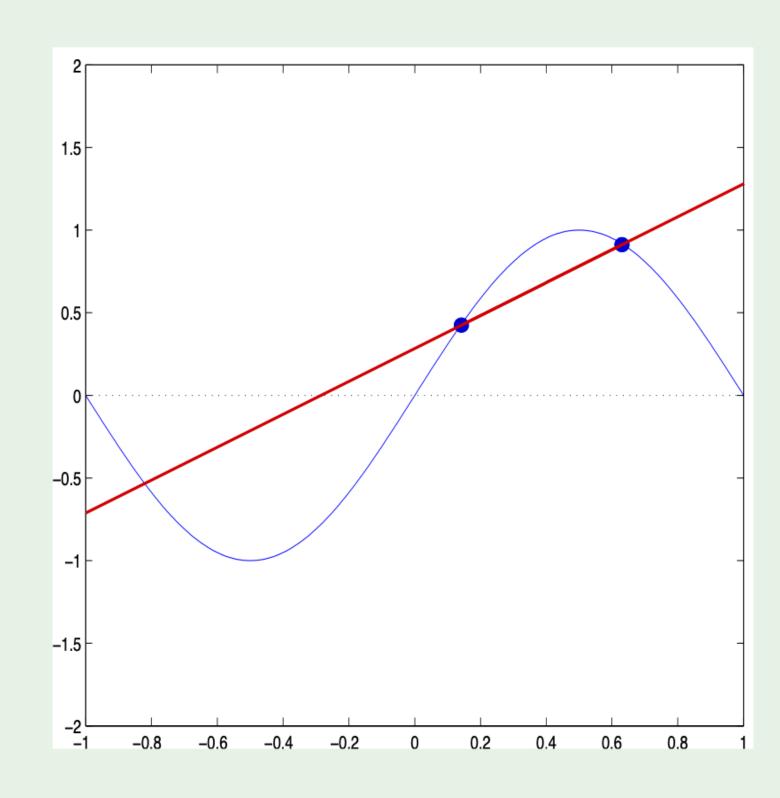




Learning - \mathcal{H}_0 versus \mathcal{H}_1

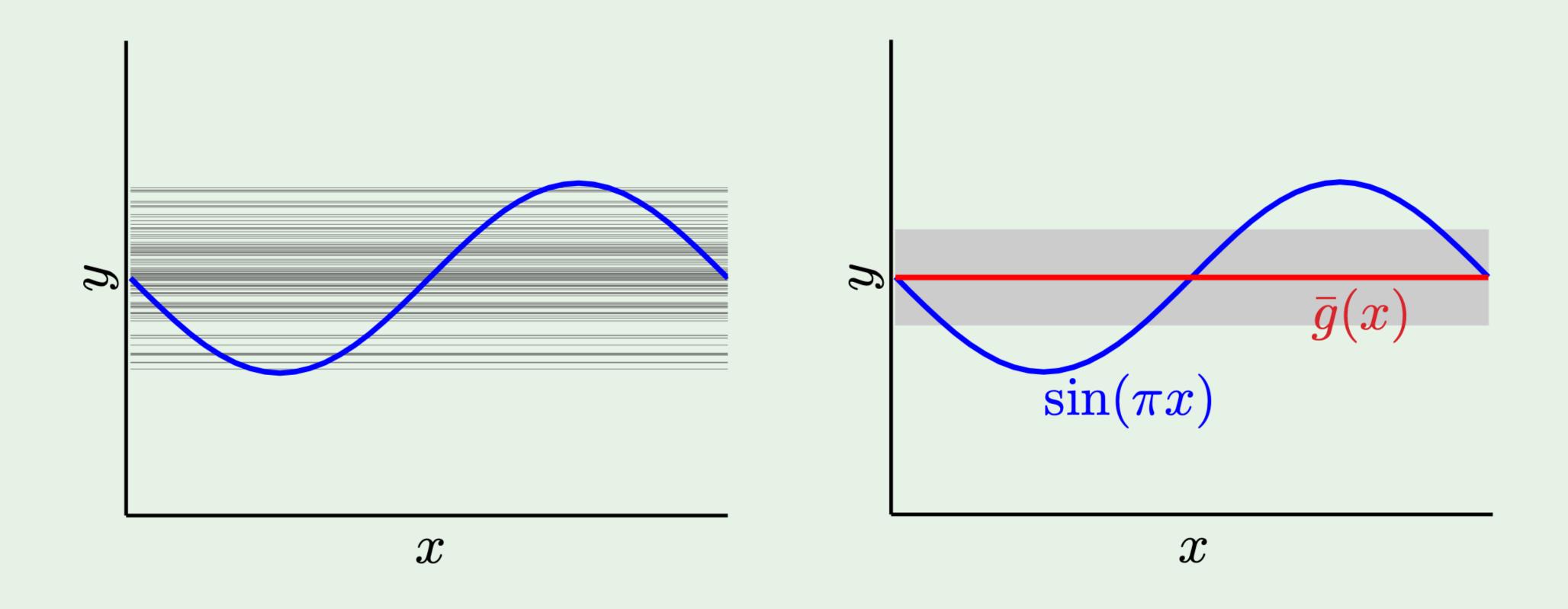
 \mathcal{H}_0



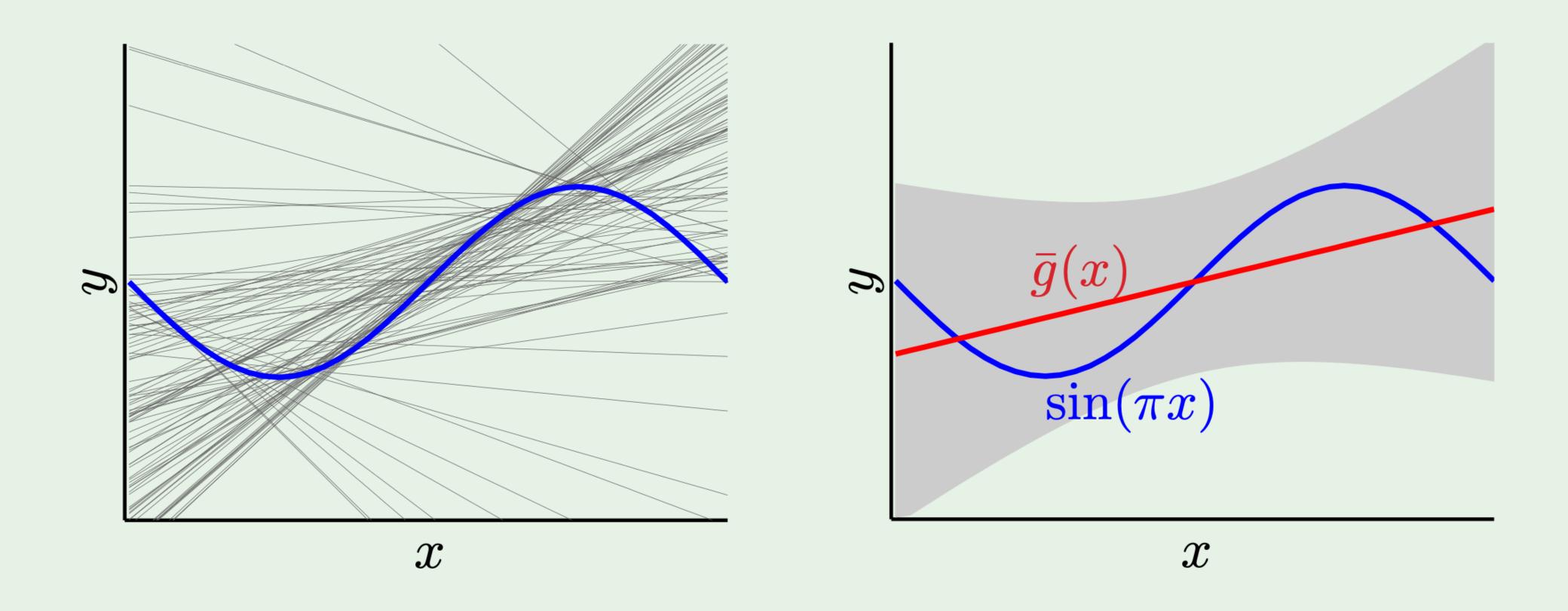


 \mathcal{H}_1

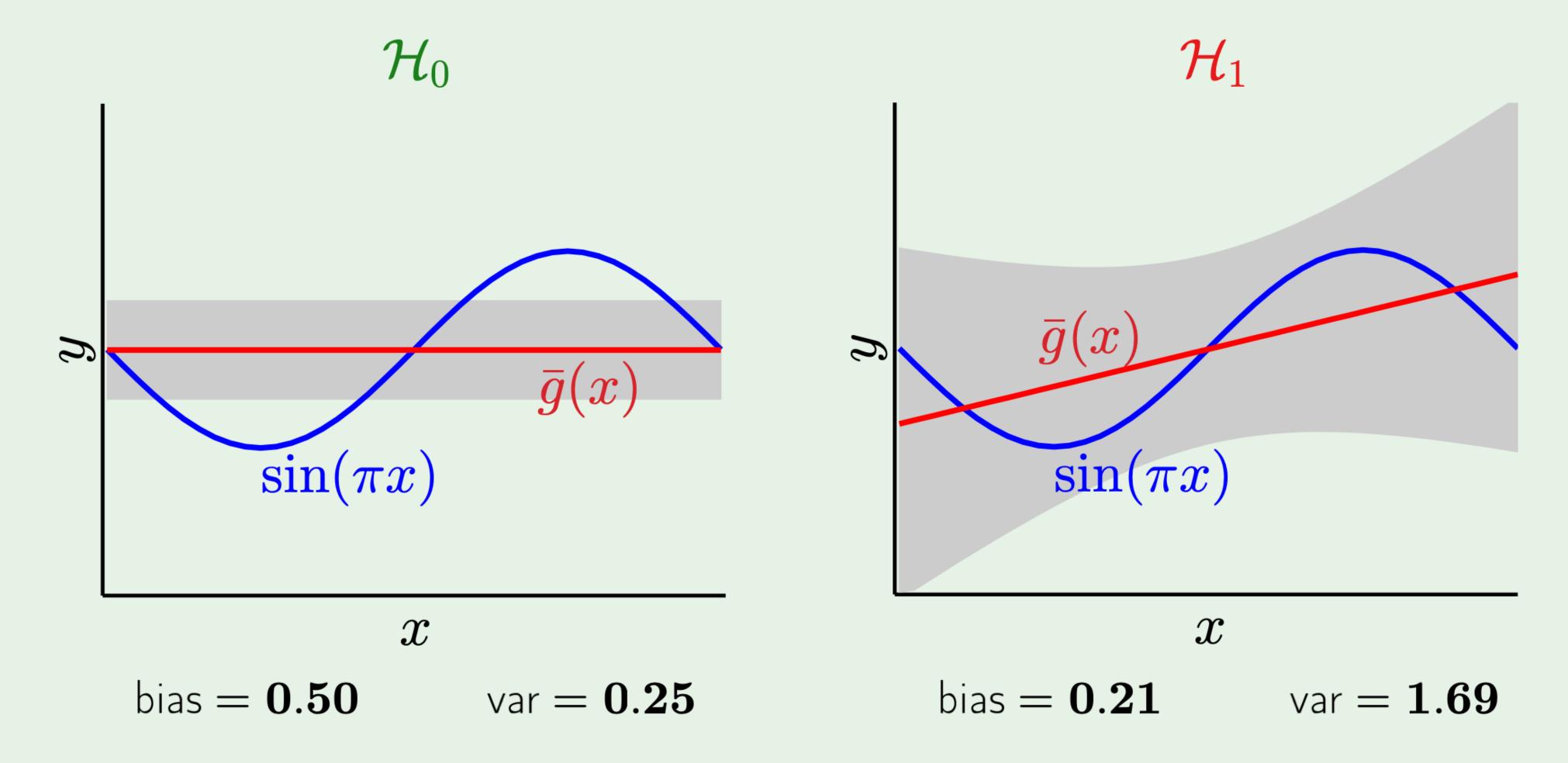
Bias and variance - \mathcal{H}_0



Bias and variance - \mathcal{H}_1



and the winner is ...



Lesson learned

Match the 'model complexity'

to the data resources, not to the target complexity