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* Learning: make future predictions from past observations



Framework: empirical risk minimization

Goal: reproduce a mapping from inputs to outputs
given a training set of example input-output pairs.

* Representation: How will we model the ]
relationship between inputs and outputs? J Modeling

» Cost: How will we evaluate whether we're
successfully modeling the input-output relationship?

» Optimizer: How will we find the best possible (cost-
minimizing) model among all possible choices given
our representation?

Inference



ERM, mathematically

Goal: approximate a function f : & — % from features to labels given a training set of examples
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* Representation: The hypothesis class # consisting of all possible candidates to approximate f.
E.g. the set of all linear functions # = {x —» wx+ b | w,b € R}.

e Cost: A function C : Z — R that scores elements of t}}lle hypothesis class (higher cost is worse).

Often the sum of pointwise costs on the data set, i.e. Z c(h(x;), f(x;)) for some function
i=1
c: Y XY — R.E.g squared error c(3,y) = (5§ — y)°.

* Optimizer: An algorithm for finding a hypothesis 4 € # that minimizes C(h). # is usually
infinite, so you can’t check all hypotheses. E.g. gradient descent.
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Hypothesis class: decision trees

Internal nodes test a particular
feature and branch based on the
feature value

Leaf nodes correspond to label
predictions

Decision trees are highly expressive

Small trees can be easy to interpret,
and mimic algorithms people might
use to make decisions
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Inference



Evaluating decision trees

* How do we know if a decision tree is fitting the data well?

* One 51mple cost function: the proportion of misclassified examples

C(h) = Z 1{h(x;) # f(x;) }. Also known as the classification error rate.
=1
* The term inside the sum is often called o-1 loss



Input Attributes

Example: waiting for a restaurant
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Evaluating decision trees

C(h) = %g 1{h(x) # (X))}
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Fitting decision trees

Want a decision tree with small misclassification rate on the training set
Want a small tree (why?)
How many possible decision trees are there?

For categorical features, number of trees is finite but combinatorially large;
impossible to try them all

Finding the smallest possible tree that is perfectly consistent with the training data is
an NP-hard problem

Need to rely on heuristics to build the tree



Heuristic fitting algorithm

* Pick the feature with the most
discriminative power, i.e. the one that
separates the training examples into
groups that are as pure as possible

* For each child node of this internal node:

* If all the examples have the same class,
done

* Otherwise,”* recurse

*Ignoring some edge cases: no examples in a child node, no more features left to use
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Restaurant problem via ERM

Goal: approximate f: & — % given A is the set of all possible combinations of
(x1, f(x))), (X5, (X)), ..., (x,, f(x,)). feature values (hungry, raining, restaurant type,
etc.). ¢ = {0,1}.
* Representation: Hypothesis class # # is the set of all possible decision trees.
n
* Cost: A function C : Z — R that C(h) = l 1 h(x. Y.
scores hypotheses, of/lten the sum of ) n z—zl th(x) # /%))

pointwise costs, i.e. Z c(h(x), f(x;))
i=1
for some functionc : ¥4 X Y — R.

* Optimizer: An algorithm for finding “Optimize” via the heuristic fitting algorithm
an h € # that minimizes C(h).






Example: predicting housing prices
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Representation: linear models

Hypothesis class: the set of all linear Y
functions R — R 5

Every one of these functions has the
form A(x) = wix + w,
E.g. wy = 3 and w; = — 2/3 on the right

Straight lines are simple and easy to
interpret: as x increases by 1 unit, y -4 -3 -2 -l I 2 3

increases by w; units.

Every hypothesis i € # can be
identified by a pair of numbers (w,, wy).



Cost: squared error

* How do we know if a line is a good fit to the
data?

* Add up squared errors between predictions
and labels.

C(hy = ) (v;— h(x))’ Y
=1

= D 0= (wyx; + wp)’
=1

» Sometimes called &, loss, because this is the

A\

squared £, norm of the residual vector y — .



Optimizer: calculus

* How do we find the values of w, and w, that minimize C(w,, w;)?

* Because # is simple, we can optimize directly with calculus!



[calculus on board]



Optimizer: calculus

How do we find the values of wy and wy that minimize C(wy, w)?

Because # is simple, we can optimize directly with calculus!

Solutions:
Wo = %;yi — Wi,
”Z,-xi)’i — (Zixi) (Ziyl-)
”Zixiz_ (in)z

Solution is unique because the cost function is convex in the parameters

W1=






