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Administrivia

• HW2 grades released


• HW4 due Monday 10/30 (sorry)


• Late waivers will be applied near 
the end of the course


• Homeworks 1–4 + midterm 1 
account for 50% of your grade


• Other 50%: HW5, HW6, midterm 2, 
final exam

median = 67

40 60 80



• Search: make decisions by looking ahead


• Logic: deduce new facts from existing facts


• Constraints: find a way to satisfy a given specification


• Probability: reason quantitatively about uncertainty


• Learning: make future predictions from past observations



Modeling



Bayesian networks

• Let  be random variables


• A Bayesian network is a directed acyclic 
graph (DAG) where each node is a 
random variable 


• The Bayesian network specifies a joint 
distribution over  as a product of local 
conditional distributions, one for each 
node


•

X = (X1, …, Xn)

X

P(X1, …, Xn) =
n

∏
i=1

P(Xi ∣ parents(Xi))

X4

X2 X3

X1

P(X1, X2, X3, X4) = P(X1)P(X2 ∣ X1)P(X3 ∣ X1)P(X4 ∣ X2, X3)



Inference



Types of inference

• Exact inference


• Compute  exactly


• Only tractable for small models with no continuous variables


• Approximate inference


• Approximate 


• There’s a chance the approximation is bad, and you have no way of 
knowing for sure

P(X ∣ E)

P(X ∣ E)



Exact inference by enumeration

Query variables , evidence variables , other variables 





We know how to compute  from the Bayesian network


Marginalization is exponential in the number of variables in the 
model

X E Y

P(x ∣ e) = α∑
y

P(x, y, e)

P(x, y, e)



Sampling
• Suppose you have a coin 


• You don’t know if it’s fair or biased, or what the bias parameter is


• How would you estimate ?


• Answer: sample! 


• Flip the coin  times. If there are  heads, estimate 


• Is this a good estimator?


• Yes, in the sense that  as 


• The more samples we collect, the better the estimate

C ∈ {h, t}

P(C = h)

N n P(C = h) ≈ n/N

n/N → P(C = h) N → ∞



Forward sampling from the joint distribution
• Can we sample from  if we have its Bayesian network?


• Yes! As long as we can sample each conditional distribution (easy for discrete distributions)


• Algorithm:


• assume  are in topological order


• for 


• sample , where the parents are assigned values from previous 
samples 


• return sample 


• The relative frequency of a given assignment  approaches  as more 
samples are generated

P(X1, …, Xn)

X1, …, Xn

i = 1,…, n :

xi ∼ P(Xi ∣ parents(Xi))
x1, …, xi−1

(x1, …, xn)

(x1, …, xn) P(x1, …, xn)



[forward sampling example]



Estimating the joint distribution
• Can we estimate  if we can sample from it?


• Yes!


• Let  denote the number of times we observe the sample 


• Let  denote the total number of samples


• Then 


• Is this useful?


• No!


• We can already exactly compute  by multiplying local conditional distributions


• But these ideas are useful when designing techniques to estimate conditional distributions 
 or marginal distributions 

P(X1, …, Xn)

n(x1, …, xn) (x1, …, xn)

N
n(x1, …, xn)

N
≈ P(x1, …, xn)

P(x1, …, xn)

P(x ∣ e) P(x)



Approximate inference: rejection sampling
• Can we turn the previous algorithm into a recipe for estimating ?


• Yes! Just toss out any samples where 


• This is known as rejection sampling

P(X = x ∣ E = e)

E ≠ e



[rejection sampling example]



Approximate inference: rejection sampling
• Can we turn the previous algorithm into a recipe for estimating ?


• Yes! Just toss out any samples where 


• This is known as rejection sampling


• In most practical applications, the number of samples where  is small, so you 
end up throwing away most samples…

P(X = x ∣ E = e)

E ≠ e

E = e



Approximate inference: importance sampling
• Let , i.e. all the variables other than the evidence variables


• We want to sample from , but we don’t know how (other than rejection 
sampling so far)


• Suppose we have a distribution  that’s easy to sample from


• Idea: sample from , then re-weight to account for the difference between  and 


•

z = (x, y)

P(z ∣ e)

Q(z)

Q P Q
nQ(z)

N
P(z ∣ e)

Q(z)



Approximate inference: importance sampling
• We want to sample from , but we don’t know how (other than rejection 

sampling so far)


• Suppose we have a distribution  that’s easy to sample from


• Idea: sample from , then re-weight to account for the difference between  and 


•

P(x, y ∣ e)

Q(x, y)

Q P Q
nQ(z)

N
P(z ∣ e)
Q(x, y)

≈ Q(z)
P(z ∣ e)

Q(z)



Approximate inference: importance sampling
• We want to sample from , but we don’t know how (other than rejection 

sampling so far)


• Suppose we have a distribution  that’s easy to sample from


• Idea: sample from , then re-weight to account for the difference between  and 


•

P(x, y ∣ e)

Q(x, y)

Q P Q
nQ(z)

N
P(z ∣ e)

Q(z)
≈ Q(z)

P(z ∣ e)
Q(z)

= P(z ∣ e)



Approximate inference: importance sampling
• Importance sampling can be much more sample-efficient than rejection sampling


• But still possible for samples to have samples to have zero or near-zero weight


• Also possible for samples to have arbitrarily large weight, causing erratic behavior


• Both cases are frequent when there is a large mismatch between  and P(z ∣ e) Q(z)



Approximate inference: likelihood weighting
• Likelihood weighting is a type of importance sampling method


• Define 


• I.e., forward sample the unobserved variables


• The weight of a sample  is


Q(z) =
m

∏
i=1

P(zi ∣ parents(Zi))

z
P(z ∣ e)

Q(z)
= α

P(z, e)
Q(z)

= α
∏i P(zi ∣ parents(Zi))∏j P(ej ∣ parents(Ej))

∏i P(zi ∣ parents(Zi))

= α∏
j

P(ej ∣ parents(Ej))



Approximate inference: likelihood weighting
function 


• for 


• 


• 


• return 


function 


• 


• for each variable  in the Bayesian network in topological order:


• if  with observed value 


• 


• else: sample from 


• return , 

likelihoodWeighting(N) :

j = 1,…, N :

(z, e), w ← weightedSample()

W[z] ← W[z] + w

normalize(W )

weightedSample() :

w ← 1

X

X ∈ E e :

w ← w ⋅ P(X = e ∣ parents(X))

P(X ∣ parents(X))

(z, e) w



Likelihood weighting example
• Observe 


• To generate one sample:


• Cloudy: 


• Sprinkler: sample from . 
Suppose we sample .


• Rain: sample from . Suppose we 
sample .


• WetGrass: 



• Final sample:  with weight 

Cloudy = 1, WetGrass = 1

w ← w ⋅ P(Cloudy = 1) = 1 ⋅ 0.5

P(Sprinkler ∣ Cloudy = 1)
Sprinkler = 0

P(Rain ∣ Cloudy = 1)
Rain = 1

w ← w ⋅ P(WetGrass = 1 ∣ Sprinkler = 0, Rain = 1) = 0.5 ⋅ 0.9

(Sprinkler = 0, Rain = 1) 0.45

WetGrass

Sprinkler Rain

Cloudy



Summary
• (Exact) inference by enumeration: exponential in number of variables


• (Approximate) forward sampling from : useful for computing marginals 



• (Approximate) rejection sampling from : simple but wasteful


• (Approximate) importance sampling from  by re-weighting : more 
efficient than rejection sampling but suffers when distributions are mismatched


• (Approximate) likelihood weighting to sample from  using a  inspired 
by forward sampling: same pros and cons as importance sampling in general

P(x, y, e)
P(x)

P(x ∣ e)

P(x, y ∣ e) Q(x, y)

P(x, y ∣ e) Q



More approximate inference
• Markov chain Monte Carlo (MCMC) methods including


• Gibbs sampling


• Metropolis-Hastings method


• Variational methods


• Message passing and belief propagation


