Artificial Intelligence

CSC 665

tyler dae devlin

PGMs 1V

10.19.2023

* Probability: reason quantitatively about uncertainty

Factored representations

Not just good for compactness!

Factored representations make it easy to construct complex models from
simple parts

Saw this with propositional vs. first-order logic

Propositional formulas are somewhat decomposable

E.g., to understand (p A 7q) V (g A =p), examine each disjunct separately

Factored representations

But propositional symbols are atomic, which limits composability

E.g., “every CSC 665 student knows Al” is awkward to express in propositional
logic: ArinKnowsAl A MarieKnowsAl A RoryKnowsAI A ...

Yet the statement in English is a simple, relating a set of students to a
disciplinary field

We needed to extend our language to first-order logic in order to get this
additional level of compositionality

Factored representations

Bayesian networks represent a joint
distribution as a product of simple

o o . . . MotherGene][FatherGene]
conditional distributions : (0. 1, 2} (0. 1 i}
Imagine writing down the joint distribution for Motherar) [FatherTrai]
the 6 variables on the right one row at a time... b

ChildGene j
But specifying the conditional distributions ({0, i 2}
and then multiplying is (relatively) (ChildTrait]
straightforward {yes, no}

From simple parts, a complex whole

Inference

Types of inference

 Exact inference

« Compute P(X | E) exactly

* Only tractable for small models with no continuous variables
* Approximate inference

* Approximate P(X | E)

* There’s a chance the approximation is bad, and you have no way of
knowing for sure

Exactinference by enumeration

* Divide set of all variables into
* Query variables X
* Evidence variables E

* Other variables Y
P(x, e)
P(e)
= aP(x, e)

— az P(x,y,e)
y

P(x|e) =

We know how to compute P(x, y, ¢) from the Bayesian network

Exactinference by enumeration

* Query variables F
* Evidence variables B, C

* Other variables A, E

P(f | b,c) = aP(f,b,c)
=a22P(f,e,a,b,c) 0

=a)) P(/)P(e)P(a| f,e)P(b | a)P(c | a)

This requires us to sum 4 products of § terms each
In general, O(2") products of O(n) terms —> O(n2") overall time complexity

Can get O(2") with backtracking-like algorithm, but can’t do any better

Exactinference by enumeration

function dolnferenceByEnumeration(X, ¢)
* O(X) < empty distribution over X

* for each value x of X:

* O(x) « jointProb({ X, E, Y}, {X=x,E=¢e}) - PX=xE=c¢)= ZP(X:x,E: e,Y=1y)

* return normalize(Q(X)) y

function jointProb(vars, assignments)

* if vars is empty: return 1.0

* V « first(vars)
* if V has an assignment v in assignments:
* return P(v | parents(V)) - jointProb(rest(vars), assignments)

, else: return Z P(v | parents(V)) - jointProb(rest(vars), assignments U {V = v})

v

Sampling

Suppose you have a coin C € {h, t}

You don’t know if it’s fair or biased, or what the bias parameter is

How would you estimate P(C = h)?

Answer: sample!

Flip the coin N times. If there are n heads, estimate P(C = h) =~ n/N

[s this a good estimator?

Yes, in the sense that n/N - P(C = h)as N — o0

The more samples we collect, the better the estimate

Estimating the joint distribution

* Can we sample from P(X, ..., X)) if we have its Bayesian network?
* Yes! As long as we can sample each conditional distribution (easy for discrete distributions)

* Algorithm:
* assume X, ..., X, are in topological order
e fori=1,....n:

* sample x; ~ P(X. | parents(X.)), where the parents are assigned values from previous

samples x, ..., x;_;

* return sample (xi, ..., x,)

* The relative frequency of a given assignment (x, ..., x,) approaches P(x, ..., x,) as more
samples are generated

