
tyler dae devlin

Artificial Intelligence
CSC 665

CSPs II
9.26.2023

Administrivia

• Homework 1 graded

• See Canvas announcement for
grading details and study advice

• First midterm next Tuesday 10/3

• See Canvas announcement for
details and logistics

• Cheat sheet allowed!

median = 62

70 8050 100

• Search: make decisions by looking ahead

• Logic: deduce new facts from existing facts

• Constraints: find a way to satisfy a given specification

• Probability: reason quantitatively about uncertainty

• Learning: make future predictions from past observations

New representation: factor graphs

A factor graph consists of

• Variables

• Domains , where

• Factors where

X = (X1, X2, …, Xn)

D = (D1, D2, …, Dn) Xi ∈ Di

f1, f2, …, fm fj(X) ≥ 0
X2

X1

f2

f3

f1

Assignment weight

The assignment of values to variables has weight

As assignment is consistent if

If multiple assignments are consistent, want to find the highest weight assignment

A CSP is satisfiable if there is some consistent assignment

x = (x1, …, xn) X = (X1, …, Xn)

W(x) = f1(x)f2(x)…fm(x)

=
m

∏
j=1

fj(x)

x W(x) > 0

Inference

Partial assignments

Current assignment is

Weight is

How do I update the weight after making an assignment to

• Queensland?

• South Australia?

x = {WA : R, NT : G}

w = 1

Hard vs. soft constraints

• A hard constraint is a factor whose value is either 0 or 1. Encodes satisfiability.

• A soft constraint is a factor that can take on positive values other than 1. Encodes
preference orderings.

Backtracking search for hard constraints
function

• if is a complete assignment: return

• choose unassigned variable

• pick an order for the values of ’s domain

• for each value in that order:

• if is consistent:

• pruned domains via lookahead

• if any domain in is empty: continue

•

• if is not None: return

• return None

backtrack(x, D) :

x x

Xi

Xi Di

v

x ∪ {Xi : v}

D′￼ ←

D′￼

x⋆ ← backtrack(x ∪ {Xi : v}, D′￼)

x⋆ x⋆

Backtracking search for soft constraints
function

• if is a complete assignment: update best and return

• choose unassigned variable

• pick an order for the values of ’s domain

• for each value in that order:

• where is the set of factors that depend on and but not unassigned variables

• if continue

• pruned domains via lookahead

• if any domain in is empty: continue

•

backtrack(x, w, D) :

x

Xi

Xi Di

v

δ ← ∏
f∈U

f(x ∪ {Xi : v}) U Xi x

δ = 0 :

D′￼ ←

D′￼

backtrack(x ∪ {Xi : v}, wδ, D′￼)

Hard vs. soft backtracking
Backtracking with exclusively hard constraints

• Trying to find assignment with nonzero weight

• Any solution is as good as any other

• Can stop once we find a single solution

• Don’t need to keep track of the weight value; if we haven’t terminated it must not be zero

Backtracking with some soft constraints

• Trying to find maximum weight assignment

• Need to explore all possible solutions and compare their weights

• Need to maintain and update the weight of a partial assignment

Both versions of backtracking have
three underspecified steps

Backtracking search: hard constraints
function

• if is a complete assignment: return

• choose unassigned variable

• pick an order for the values of ’s domain

• for each value in that order:

• if is consistent:

• pruned domains via lookahead

• if any domain in is empty: continue

•

• if is not None: return

• return None

backtrack(x, D) :

x x

Xi

Xi Di

v

x ∪ {Xi : v}

D′￼ ←

D′￼

x⋆ ← backtrack(x ∪ {Xi : v}, D′￼)

x⋆ x⋆

Backtracking search: soft constraints
function

• if is a complete assignment: update best and return

• choose unassigned variable

• pick an order for the values of ’s domain

• for each value in that order:

• where is the set of factors that depend on and but not unassigned variables

• if continue

• pruned domains via lookahead

• if any domain in is empty: continue

•

backtrack(x, w, D) :

x

Xi

Xi Di

v

δ ← ∏
f∈U

f(x ∪ {Xi : v}) U Xi x

δ = 0 :

D′￼ ←

D′￼

backtrack(x ∪ {Xi : v}, wδ, D′￼)

Design choices

1. How to choose which variable to work on next?

2. How to order the values of that variable?

3. How to prune the domains?

Design choices

1. How to choose which variable to work on next? Most constrained variable heuristic

2. How to order the values of that variable? Least constrained value heuristic

3. How to prune the domains? Lookahead (forward checking or AC-3)

Lookahead: forward checking
• After assigning a variable , eliminate inconsistent values from the domains of ’s

neighbors

• If any domain becomes empty, return (no possible solution)

Xi Xi

Arc consistency

• A variable is arc consistent with respect to if for each there exists
 such that for all binary factors on and .

• Enforcing arc consistency on w.r.t. means removing values from until is
arc-consistent w.r.t.

• Forward checking enforces arc consistency on the neighbors of after assigning a value to

Xi Xj xi ∈ Di

xj ∈ Dj f(xi, xj) ≠ 0 f Xi Xj

Xi Xj Di Xi

Xj

Xi Xi

AC-3

•

• while is nonempty:

• pop some off of

• for every neighbor of

• enforce arc consistency on w.r.t.

• if changed: add to

Q ← {Xj}

Q

Xj Q

Xi Xj :

Xi Xj

Di Xi Q

AC-3 on Australia

