Artificial Intelligence csc 665

CSPS II

9.26.2023

Administrivia

- Homework 1 graded
- See Canvas announcement for grading details and study advice
- First midterm next Tuesday 10/3
- See Canvas announcement for details and logistics
- Cheat sheet allowed!

- Search: make decisions by looking ahead
- Logic: deduce new facts from existing facts
- Constraints: find a way to satisfy a given specification
- Probability: reason quantitatively about uncertainty
- Learning: make future predictions from past observations

New representation: factor graphs

A factor graph consists of

- Variables $X = (X_1, X_2, ..., X_n)$
- Domains $D = (D_1, D_2, ..., D_n)$, where $X_i \in D_i$
- Factors $f_1, f_2, ..., f_m$ where $f_j(X) \ge 0$

Assignment weight

The assignment of values $x = (x_1, ..., x_n)$ to variables $X = (X_1, ..., X_n)$ has weight

$$W(x) = f_1(x)f_2(x)...f_m(x)$$
$$= \prod_{j=1}^m f_j(x)$$

As assignment x is consistent if W(x) > 0

If multiple assignments are consistent, want to find the **highest weight** assignment A CSP is **satisfiable** if there is some consistent assignment

Inference

Partial assignments

Current assignment is $x = \{WA : R, NT : G\}$

Weight is w = 1

How do I update the weight after making an assignment to

- Queensland?
- South Australia?

Hard vs. soft constraints

- A hard constraint is a factor whose value is either o or 1. Encodes satisfiability.
- A **soft constraint** is a factor that can take on positive values other than 1. Encodes preference orderings.

Backtracking search for hard constraints

function backtrack(x, D):

- if x is a complete assignment: return x
- choose unassigned variable X_i
- pick an order for the values of X_i 's domain D_i
- **for** each value *v* in that order:
 - if $x \cup \{X_i : v\}$ is consistent:
 - $D' \leftarrow$ pruned domains via lookahead
 - if any domain in D' is empty: continue
 - $x^* \leftarrow \text{backtrack}(x \cup \{X_i : v\}, D')$
 - if x^* is not None: return x^*
- return None

Backtracking search for soft constraints

function backtrack(x, w, D):

- if x is a complete assignment: update best and return
- choose unassigned variable X_i
- pick an order for the values of X_i 's domain D_i
- **for** each value *v* in that order:
 - δ ← $\prod_{f \in U} f(x \cup \{X_i : v\})$ where U is the set of factors that depend on X_i and x but not unassigned variables
 - if $\delta = 0$: continue
 - $D' \leftarrow$ pruned domains via lookahead
 - if any domain in D' is empty: continue
 - backtrack($x \cup \{X_i : v\}, w\delta, D'$)

Hard vs. soft backtracking

Backtracking with exclusively hard constraints

- Trying to find assignment with nonzero weight
- Any solution is as good as any other
- Can stop once we find a single solution
- Don't need to keep track of the weight value; if we haven't terminated it must not be zero

Backtracking with some soft constraints

- Trying to find maximum weight assignment
- Need to explore all possible solutions and compare their weights
- Need to maintain and update the weight of a partial assignment

Both versions of backtracking have three underspecified steps

Backtracking search: hard constraints

function backtrack(x, D):

- if x is a complete assignment: return x
- choose unassigned variable X_i
- pick an order for the values of X_i 's domain D_i
- for each value *v* in that order:
 - if $x \cup \{X_i : v\}$ is consistent:
 - $D' \leftarrow$ pruned domains via lookahead
 - if any domain in D' is empty: continue
 - $x^* \leftarrow \text{backtrack}(x \cup \{X_i : v\}, D')$
 - if x^* is not None: return x^*
- return None

Backtracking search: soft constraints

function backtrack(x, w, D):

- if x is a complete assignment: update best and return
- choose unassigned variable X_i
- pick an order for the values of X_i 's domain D_i
- **for** each value *v* in that order:
 - δ ← $\prod_{f \in U} f(x \cup \{X_i : v\})$ where U is the set of factors that depend on X_i and x but not unassigned variables
 - if $\delta = 0$: continue
 - $D' \leftarrow$ pruned domains via lookahead
 - if any domain in D' is empty: continue
 - backtrack($x \cup \{X_i : v\}, w\delta, D'$)

Design choices

- 1. How to choose which variable to work on next?
- 2. How to order the values of that variable?
- 3. How to prune the domains?

Design choices

- 1. How to choose which variable to work on next? Most constrained variable heuristic
- 2. How to order the values of that variable? Least constrained value heuristic
- 3. How to prune the domains? Lookahead (forward checking or AC-3)

Lookahead: forward checking

- After assigning a variable X_i , eliminate inconsistent values from the domains of X_i 's neighbors
- If any domain becomes empty, return (no possible solution)

Arc consistency

- A variable X_i is arc consistent with respect to X_j if for each $x_i \in D_i$ there exists $x_j \in D_j$ such that $f(x_i, x_j) \neq 0$ for all binary factors f on X_i and X_j .
- Enforcing arc consistency on X_i w.r.t. X_j means removing values from D_i until X_i is arc-consistent w.r.t. X_j
- Forward checking enforces are consistency on the neighbors of X_i after assigning a value to X_i

AC-3

- $Q \leftarrow \{X_j\}$
- while Q is nonempty:
 - pop some X_j off of Q
 - for every neighbor X_i of X_j :
 - enforce arc consistency on X_i w.r.t. X_j
 - if D_i changed: add X_i to Q

AC-3 on Australia

