
tyler dae devlin

Artificial Intelligence
CSC 665

Search IV
9.5.2023

Recap

Administrivia
• Grades posted for

homework 0

• Homework 1 due Monday
9/11

• Office hours Tuesdays
before class, Thursdays
after class

• Campuswire discussion
forum for questions (and
participation credit)

median = 5

• Search: make decisions by looking ahead

• Logic: deduce new facts from existing facts

• Constraints: find a way to satisfy a given specification

• Probability: reason quantitatively about uncertainty

• Learning: make future predictions from past observations

Search

Modeling: start state, actions, costs, transition model, goal test

Inference:

• Uninformed: backtracking, DFS, BFS, UCS

• Informed: greedy search and A* with heuristics via problem relaxation

Adversarial Game-Playing

Can we model Connect Four as a search problem?

[modeling attempt on board]

Need to make some changes…

Modeling a game
Start state:

Possible actions:

Transition model:

Goal test:

Agent utility:

Whose turn:

s0 ∈ S

Actions(s) ⊆ A

Succ(s, a) ∈ S

IsEnd(s) ∈ {True, False}

Utility(s) ∈ ℝ

Player(s) ∈ P

state space , action set , player set , real numbers S A P ℝ

Example: chess
starting chess board

legal chess moves available to

board state resulting from taking action

whether is a checkmate or stalemate

s0 =

Actions(s) = Player(s)

Succ(s, a) = a

IsEnd(s) = s

Utility(s) =
+∞ if white wins
−∞ if black wins
0 otherwise

Player(s) = {white if an even number of turns have passed
black if an odd number of turns have passed

Two key characteristics of games

Different players in control at different nodes — one maximizing player and one
minimizing player.

All utility is concentrated at terminal nodes (i.e. leaves in a tree) — don’t know
whether a move is good or bad until the game is over.

What should you do?

• Given a game state , what action in should you take?

• Depends on who you are — assume you are the maximizing player, max

• max’s best action depends on what min does on the next turn

• But min’s best action depends on max’s move on the next next turn

• … which depends on min’s move on the next next next turn

• And so on …

s Actions(s)

[minimax game tree on board]

Minimax recurrence
Let denote the minimax value of the game starting at state .

(These are the node values from the previous example.)

V(s) s

V(s) =
Utility(s) if IsEnd(s)
maxa∈Actions(s) V(Succ(s, a)) if Player(s) = max

mina∈Actions(s) V(Succ(s, a)) if Player(s) = min

Expanding the recurrence, gives an expression of the form

V(s0) = max
a0

(min
a1

(max
a2

(… min
an

Utility(Succ(sn, an))…)))

Game trees are exponentially large

• 250K possible tic-tac-toe games

• 288B possible chess games after just 8 moves

• 1029000 total possible chess games (vs. 1080 atoms in universe)

Computing the minimax recurrence down to the leaf nodes is usually not feasible.
Need a way to speed up decision making.

Two ways to speed up

• Estimate using domain knowledge, which allows you to run a depth-limited
search. (Same basic idea as informed search with a heuristic.)

• Prune subtrees whose root node value can’t possibly be better than a lower bound
we’ve already found.

Won’t discuss first approach, but you should know alpha-beta pruning (on the following slides).

V(s)

[alpha-beta pruning on board]

