
tyler dae devlin

Artificial Intelligence
CSC 665

Search III
8.31.2023

Recap

Administrivia

• Late submissions open until Friday night for homework 0

• Aiming to get grading done by next class

• Homework 1 due Monday 9/11

• Office hours Tuesdays before class, Thursdays after class

• Search: make decisions by looking ahead

• Logic: deduce new facts from existing facts

• Constraints: find a way to satisfy a given specification

• Probability: reason quantitatively about uncertainty

• Learning: make future predictions from past observations

Search

Modeling: start state, actions, cost, transition model, goal test

Inference: backtracking, DFS, BFS, UCS — all uninformed search algorithms

Informed search

Probably not good
to start driving
toward Marin

Probably not good
to turn left

Starting in the upper left state, probably not
good to move right before sucking

How do we know?

s0 s⋆

Uniform cost frontier
is a good idea.

But why bother
searching in this
direction?

Heuristic functions

Consider getting from to on a path through .s0 s⋆ s

s0 … s … s⋆

PastCost(s) FutureCost(s)

UCS and BFS work by maintaining a frontier of uniform PastCost.

FutureCost is unknown, otherwise we could immediately find an optimal solution.

But we can estimate with a simple heuristic .FutureCost(s) h(s)

Naïve Idea

• If we had access to FutureCost, then an optimal algorithm is to always expand the
node that minimizes FutureCost.

• If all we have is an estimate , then why not pick the node that minimizes ?

• This is called greedy search.

h h

[greedy search examples]

A* Search
UCS

• Maintains a frontier of uniform PastCost

• Correct but slow.

Greedy search

• Chooses the node that minimizes

• Incorrect but potentially fast.

A*

• Maintains a frontier of uniform

• Sometimes correct and potentially fast.

h

PastCost + h

A* vs. Greedy

Problem: short-term greediness can get you into long-term trouble (true for all
greedy algorithms in computer science and in life).

Key insight: computing PastCost is easy (just accumulate edge costs), and helps us
realize when a prior greedy decision has led us astray.

[A* maze example]

A* can be wrong

s0

s2

s⋆

s1

100

0

1 1

3 1
0

Action costs

FutureCost

When is A* correct?

Definition: A heuristic is admissible if it never overestimates the cost to the
goal. That is, for every .

Theorem: A* with heuristic function is correct if is admissible.

h(s) ≤ FutureCost(s) s ∈ S

h h

When is A* correct?

Proof: For contradiction, assume A* returns a path with cost , but the
optimal path has cost . Then there is a node on the optimal path
that was not expanded by A*. Focusing on this node,

This is a contradiction. Thus, A* returns an optimal path.

C
C⋆ < C s

C⋆ < PastCost(s) + h(s)
≤ PastCost(s) + FutureCost(s)
= C⋆

How fast is A*?

Theorem: A* explores all states satisfying .

Proof: A* explores all states satisfying

Takeaway: Want to be as large as possible, because this means we explore fewer
states. But can’t be too large or we lose admissibility (and thus correctness)!

s PastCost(s) ≤ PastCost(s⋆) − h(s)

s PastCost(s) + h(s) ≤ PastCost(s⋆)

h

Problem Relaxation

• How to choose ?

• Create a “relaxed” version of the problem by removing constraints.

• Set the estimate in the original problem to be the exact FutureCost in the
relaxed problem.

• Such a heuristic is guaranteed to be admissible.

• Example: for mazes, remove the constraint that you can’t travel through walls.
Then is simply the Manhattan distance from to .

• What is the relaxation for Google maps? for the Roomba?

h

h

FutureCost(s) s s⋆

