
tyler dae devlin

Artificial Intelligence
CSC 665

Search II
8.29.2023

• Search: make decisions by looking ahead

• Logic: deduce new facts from existing facts

• Constraints: find a way to satisfy a given specification

• Probability: reason quantitatively about uncertainty

• Learning: make future predictions from past observations

Recap

Homework 0

• Due yesterday at midnight.

• Reminder that the late policy allows you to submit up to 5 days late with a 10%
penalty per day.

• Homework 0 is free points!

Modeling (last time)

Start state:

Possible actions:

Action cost:

Transition model:

Goal test:

s0 ∈ S

Actions(s) ⊆ A

Cost(s, a) ∈ ℝ≥0

Succ(s, a) ∈ S

IsEnd(s) ∈ {True, False}

state space , action set , non-negative real numbers S A ℝ≥0

Backtracking search (last time)
Global state: minimum cost path, set of explored nodes

function

• if

• update the minimum cost path

• for each action

• if hasn’t been explored yet:

• add it to the explored set

• extend path with and

• recurse:

search(s, path) :

IsEnd(s) :

a ∈ Actions(s) :

Succ(s, a)

Succ(s, a) Cost(s, a)

search(Succ(s, a), path)

[fix goat.py]

More inference algorithms

Breadth-first and depth-first search

• Last time: backtracking search implemented recursively

• Today: BFS and DFS implemented iteratively

• Every iterative program can be implemented recursively, and vice-versa

General approach

• Start with a frontier that contains , and an empty explored set

• While the frontier is nonempty:

• Pop a node from the frontier

• If return solution

• Add to the explored set

• Expand , adding to the frontier for each , as long as it’s
neither in the frontier nor already explored

s0

s

IsEnd(s) :

s

s Succ(s, a) a ∈ Actions(s)

BFS vs. DFS

• Breadth-first search (BFS)

• Expands the shallowest node in the frontier

• Explores nodes in order of increasing depth

• Frontier is a queue (FIFO)

• Depth-first search (DFS)

• Expands the deepest node in the frontier

• Equivalent to a backtracking search that stops after the first solution

• Frontier is a stack (LIFO)

[maze examples]

Two ways to analyze algorithms

• Correctness

• Exact or approximate?

• If approximately correct, how far off from exactness?

• If exactly correct, under what conditions?

• Efficiency

• Asymptotic analysis (big-oh)

• Time

• Space

Correctness of search algorithms

• Backtracking search: returns shortest path for any cost function

• BFS: returns shortest path for (non-negative) constant cost function

• DFS: returns shortest path for zero cost function

Efficiency of search algorithms

• Backtracking search: space, time

• BFS: space, time

• DFS: space,

 actions per state, solution depth , maximum depth

O(D) O(bD)

O(bd) O(bd)

O(D) O(bD)

b d D

Summary

algorithm cost function space time

backtracking any linear exponential

BFS constant exponential exponential

DFS zero linear exponential

Layered search

• BFS works because it explores in layers of equal depth

• But only if the cost function is constant

• Can we make the idea of a layered search work with non-constant action costs?

Yes, thanks to Dijkstra!

Uniform Cost Search (UCS, Dijkstra’s Algorithm)
• Start with a frontier that contains , and an empty explored set

• While the frontier is nonempty:

• Pop the node with smallest priority from the frontier

• If return solution

• Add to the explored set

• For each ,

• Get

• If is already explored: continue

• Add to frontier with priority

s0

s p

IsEnd(s) :

s

a ∈ Actions(s)

s′￼ = Succ(s, a)

s′￼

s′￼ p + Cost(s, a)

Correctness of UCS
Theorem: Assume action costs are non-negative. If a node is popped from the
frontier with priority , then is the cost of the min-cost path from to .

Proof: Take CSC 510 (or come to office hours).

Corollary: UCS computes the min-cost path to the goal node.

s
p p s0 s

Informed search

Using domain knowledge

• So far: uninformed search

• Algorithms that don’t use problem-specific information

• Pro: completely generic — same algorithm works for all search problems

• Con: can’t useful domain knowledge

• Next: informed search

• Use a heuristic function to estimate progress toward goalh : S → ℝ

